Toggle light / dark theme

Sign up for a free Closer To Truth account to receive special members-only benefits: https://closertotruth.com/

How to explain our inner awareness that is at once most common and most mysterious? Traditional explanations focus at the level of neuron and neuronal circuits in the brain. But little real progress has motivated some to look much deeper, into the laws of physics — information theory, quantum mechanics, even postulating new laws of physics.

Watch more videos on consciousness as all physical: https://shorturl.at/PKpOk.

Sean Carroll is Homewood Professor of Natural Philosophy at Johns Hopkins University and fractal faculty at the Santa Fe Institute. His research focuses on fundamental physics and cosmology.

Kamiokande-II saw the first supernova neutrinos from the famous SN 1987A.


Every few seconds, somewhere in the observable Universe, a massive star collapses and unleashes a supernova explosion. Japan’s Super-Kamiokande observatory might now be collecting a steady trickle of neutrinos from those cataclysms, physicists say — amounting to a few detections a year.

These tiny subatomic particles are central to understanding what goes on inside a supernova: because they zip out of the star’s collapsing core and across space, they can provide information about any potentially new physics that occur under extreme conditions.

At last month’s Neutrino 2024 conference in Milan, Italy, Masayuki Harada, a physicist at the University of Tokyo, revealed that the first hints of supernova neutrinos seem to be emerging from the cacophony of particles that the Super-Kamiokande detector collects every day from other sources, such as cosmic rays hitting the atmosphere and nuclear fusion in the Sun’s core. The result “indicates that we started observing a signal”, says Masayuki Nakahata, a physicist at the University of Tokyo and spokesperson for the experiment, which is commonly referred to as Super-K. But Nakahata cautions that the supporting data — collected over 956 days of observation — are still very weak.

Primordial black holes are tiny versions of the big beasts you typically think of. They’re so small, they could easily fit inside stuff, like a planet, or a star… or a person. So, needless to say, this has piqued the curiosity of our Dead Planeteers.

Leah and Chelsea want to know, can you put primordial black holes inside things and what happens if you do?

Black hole astronomer Allison Kirkpatrick at the University of Kansas is back to help them figure this one out. And it turns out, despite being very small, these black holes are incredibly heavy, so ingesting and/or hugging them seems firmly off the cards — much to Chelsea’s displeasure.

Dead Planets Society is a podcast that takes outlandish ideas about how to tinker with the cosmos – from punching a hole in a planet to unifying the asteroid belt – and subjects them to the laws of physics to see how they fare.

The Halo Drive, using a laser to gain fuel free relativistic propulsion from a black hole. By shooting a laser close to the event horizon of a black hole, Dr. David Kipping’s conceptual star drive could lead to traveling across the milky way from one black hole to another as well as techno signatures from advanced civilizations that might already be using this intergalactic relay system.

The halo drive: • the halo drive.

Cool Worlds — YouTube: / @coolworldslab.

Cool Worlds:

A lot of additional research will need to be done on this subject, but it is always good to see new ideas being presented, especially when they challenge the accepted theories.

Very interesting theory, but…

I thought nothing could travel faster than light.

Crater 2, a large, dim satellite galaxy, exhibits properties that challenge traditional cold dark matter theories. The SIDM theory provides a better explanation, suggesting dark matter interactions that reduce density and increase galaxy size, matching observations.

Crater 2, located approximately 380,000 light years from Earth, is one of the largest satellite galaxies of the Milky Way. Extremely cold and with slow-moving stars, Crater 2 has low surface brightness. How this galaxy originated remains unclear.

Challenges in Understanding Crater 2.

The Fireball collaboration at CERN has generated a powerful electron-positron plasma beam to study black hole jets, significantly advancing our understanding of these cosmic phenomena and supporting simulations with experimental data. Credit: SciTechDaily.com.

The Fireball collaboration used CERN ’s HiRadMat facility to produce an analog of the jets of matter and antimatter that stream out of some black holes and neutron stars.

At CERN’s HiRadMat facility, researchers have created a high-density electron-positron plasma beam that mimics astrophysical jets from black holes, providing new insights into space phenomena. These experiments help validate theoretical models with real-world data, paving the way for deeper understanding of cosmic events like black hole jets.