Toggle light / dark theme

No Big Bang? Quantum equation predicts universe has no beginning

New equation proves no “Big Bang” theory and no beginning either as well as no singularity.


(Phys.org) —The universe may have existed forever, according to a new model that applies quantum correction terms to complement Einstein’s theory of general relativity. The model may also account for dark matter and dark energy, resolving multiple problems at once.

The widely accepted age of the , as estimated by , is 13.8 billion years. In the beginning, everything in existence is thought to have occupied a single infinitely dense point, or . Only after this point began to expand in a “Big Bang” did the universe officially begin.

Although the Big Bang singularity arises directly and unavoidably from the mathematics of general relativity, some scientists see it as problematic because the math can explain only what happened immediately after—not at or before—the singularity.

Read more

Hold Up, Did We Just Crack Time Travel?

Astrophysicists famously proved Einstein’s theory on the existence of gravitational waves last week. Here’s the less covered part of it all: It might, down the line, bring us closer to moving through time.

A now-famous team of astrophysicists shocked the world Thursday after recording the gravitational waves of two black holes slamming into each other 1.3 billion light-years away.

This detection supports Einstein’s general theory of relativity in a way that revolutionizes scientific understanding of how space and time behave in extreme environments, and astrophysics will never be the same.

Read more

Japan Launches Observatory To Study Black Holes And Dying Stars

Japan is studying the black holes.


This week the Japan Aerospace Exploration Agency (JAXA) successfully launched a new space observatory designed to study black holes, dying stars and the history of galaxy clusters. The X-ray Astronomy Satellite, known as ASTRO-H, will be able to detect X-rays more than 10 times fainter than its telescope predecessor, Suzaku.

ASTRO-H was launched on the Japanese launch vehicle H-IIA from Tanegashima Launch Center on Wednesday, February 17th at 3:45 am EST. Within hours, the satellite deployed its solar arrays and was functioning normally.

It’s tradition for Japan’s astronomy satellites to be given a provisional name before launch and be renamed once they’re in orbit. After its successful launch, JAXA announced ASTRO-H was renamed to Hitomi, a Japanese word that refers to an eye’s pupil, which is like an aperture collecting light for an eye.

Read more

“The Universe is Shrinking” –A Radical Alternative to Big Bang Theory (Weekend Feature)

Here’s a concept; the Universe is Shrinking.


“The field of cosmology these days is converging on a standard model, centered around inflation and the Big Bang,” says physicist Arjun Berera at the University of Edinburgh, UK. “This is why it’s as important as ever, before we get too comfortable, to see if there are alternative explanations consistent with all known observation.”

Read more

A 5-dimensional black hole could break the laws of physics as we know them

You know what they say about rules…


If you thought regular black holes were about as weird and mysterious as space gets, think again, because for the first time, physicists have successfully simulated what would happen to black holes in a five-dimensional world, and the way they behave could threaten our fundamental understanding of how the Universe works.

The simulation has suggested that if our Universe is made up of five or more dimensions — something that scientists have struggled to confirm or disprove — Einstein’s general theory of relativity, the foundation of modern physics, would be wrong.

In other words, five-dimensional black holes would contain gravity so intense, the laws of physics as we know them would fall apart.

Read more

General Relativity Might Be No Match for a Five-Dimensional Black Hole

We don’t live in a world that’s pinning the survival of humanity of Matthew McConaughey’s shoulders, but if it turns out the plot of the 2014 film Interstellar is true, then we live in a world with at least five dimensions. And that would mean that a ring-shaped black hole would, as scientists recently demonstrated, “break down” Einstein’s general theory of relativity. (And to think, the man was just coming off a phenomenal week.)

In a study published in Physical Review Letters, researchers from the UK simulated a black hole in a “5-D” universe shaped like a thin ring (which were first posited by theoretical physicists in 2002). In this universe, the black hole would bulge strangely, with stringy connections that become thinner as time passes. Eventually, those strings pinch off like budding bacteria or water drops off a stream and form miniature black holes of their own.

This is wicked weird stuff, but we haven’t even touched on the most bizarre part. A black hole like this leads to what physicists call a “naked singularity,” where the equations that support general relativity — a foundational block of modern physics — stop making sense.

Read more

A five-dimensional black hole could break the theory of relativity

The 5 Dimensional Black Hole could break the theory of relativity: Simulation suggests strange rings with ‘ultragravity’ that defy physics may exist.

Follow us: @MailOnline on Twitter | DailyMail on Facebook.


Researchers from the University of Cambridge and Queen Mary University of London made the discovery after simulating a black hole shaped like a very thin ring using computer models.

Read more

LIGO’s black holes may have lived and died inside a huge star

But now it seems that collision may have been followed by a bright burst of gamma rays. NASA’s Fermi gamma-ray space telescope detected such an eruption just 0.4 seconds after LIGO’s gravitational waves arrived at Earth. It’s not clear whether the same event triggered both signals, but the Fermi team calculated that the probability of a coincidence was just 0.0022.

The problem is that no one expected such a bright gamma-ray burst to accompany a black-hole merger. Coalescing black holes orbit each other in a cosmic do-si-do, clearing out a region of empty space. According to models of gamma-ray bursts, isolated black holes can’t ignite them.

Strange signal

“Everything smells like a short gamma-ray burst in our signal,” says Valerie Connaughton of the Fermi team. “And that’s a real problem in a way – you don’t expect this signal from merging black holes.”

Read more