Toggle light / dark theme

New CERN LHC Experiments –“Predict a Boson Beyond the Higgs That Could Unlock Clues to Existence of Dark Matter”

Two separate experiments at the Large Hadron Collider at the European Organisation for Nuclear Research, on the French-Swiss border, appear to confirm the existence of a subatomic particle, the Madala boson, that for the first time could shed light on one of the great mysteries of the universe — dark matter.

Black Holes are likely sending quantum messages in the universe

Spinning black holes are capable of complex quantum information processes encoded in the X-ray photons emitted by the accretion disk.

The black holes sparked the public imagination for almost 100 years now. Their debated presence in the universe has been proven without a doubt by detecting the X-ray radiation coming from the center of the galaxies, a feature of massive black holes. Black holes emit X-ray radiation, light with high energy, due to the extreme gravity in their vicinity. The vast majority if not all of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material accreting around black holes.

X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.

Should We Build a Dyson Sphere?

To check out any of the lectures available from Great Courses Plus go to http://ow.ly/Y8lm303oKJe

Get your own Space Time t­shirt at http://bit.ly/1QlzoBi

Tweet at us! @pbsspacetime
Facebook: facebook.com/pbsspacetime
Email us! pbsspacetime [at] gmail [dot] com.

Comment on Reddit: http://www.reddit.com/r/pbsspacetime

The Kepler telescope recently noticed a strange partial eclipse that some have speculated could be a Dyson Sphere. Are Dyson Sphere’s possible? Are they practical? What other alternatives to futuristic energy capture do we have to choose from? Why not a kugelblitz — a swarm of black hole powered engines?

Previous Episode.