The weird quantum phenomenon of entanglement could produce shortcuts between distant black holes.
Category: cosmology – Page 421
Nice.
There are many scientific and non-scientific varieties of the answer about what came before Big Bang. Some say there was literally nothing and some say a black hole or a multiverse. But now a group of mathematicians from Canada and Egypt have analyzed some cutting edge scientific theory and a complex set of equations to find what preceded the universe in which we live. Their research paper has been published in Nature.
To explain it in simple and easily understandable terms; they applied the theories of the very small i.e. the world of quantum mechanics, to the entire universe — explained by general theory of relativity, and discovered the universe essentially goes through four different phases.
In their study, published on the pre-print server arxiv.org, Maha Salah, Fayçal Hammad, Mir Faizal and Ahmed Farag Ali have been able to look at the state of the universe before its beginning, creating a model of pre-Big Bang cosmology.
The cosmology of the universe can be modelled using the Einstein’s general theory of relativity. It predicts that the universe is expanding and the galaxies are all moving away from us. Also the further a galaxy is away, the faster it is moving away from us. This is used to predict the universe started with a Big Bang – if you reverse this expansion to go back in time, eventually we come to the point where the universe began.
At the point of Big Bang the laws of Einstein’s general theory of relativity seem to break down and it is not possible to use them to understand how the Big Bang occurred. So, how did the Big Bang happen and can we describe physics before the Big Bang? Can we describe physics before the creation of the universe? According to the team’s model, yes, we can.
Not 100 billion galaxies but one trillion. Is this the missing mass then? No more “dark matter”?
The latest finding with the Hubble space telescope:
Spinning black holes are capable of complex quantum information processes encoded in the X-ray photons.
The black holes sparked the public imagination for almost 100 years. Their presence in the universe has been long debated; however, the detection of X-ray radiation coming from the center of the galaxies, a feature of black holes, has put an end to the discussion and undoubtedly proven their existence.
The vast majority, if not all, of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material accreting around them. Accretion disks emit X-ray radiation, light with high energy, due to the extreme gravity in the vicinity of black holes. X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.
Scientists may have found signs that phonons, the very small packets of energy that make up sound waves, were leaking out of sonic black holes, just as Hawking’s equations predicted.
Some 42 years ago, renowned theoretical physicist Stephen Hawking proposed that not everything that comes in contact with a black hole succumbs to its unfathomable nothingness. Tiny particles of light (photons) are sometimes ejected back out, robbing the black hole of an infinitesimal amount of energy, and this gradual loss of mass over time means every black hole eventually evaporates out of existence.
Known as Hawking radiation, these escaping particles help us make sense of one of the greatest enigmas in the known Universe, but after more than four decades, no one’s been able to actually prove they exist, and Hawking’s proposal remained firmly in hypothesis territory.
Consciousness isn’t something scientists like to talk about much. You can’t see it, you can’t touch it, and despite the best efforts of certain researchers, you can’t quantify it. And in science, if you can’t measure something, you’re going to have a tough time explaining it.
But consciousness exists, and it’s one of the most fundamental aspects of what makes us human. And just like dark matter and dark energy have been used to fill some otherwise gaping holes in the standard model of physics, researchers have also proposed that it’s possible to consider consciousness as a new state of matter.
To be clear, this is just a hypothesis, and one to be taken with a huge grain of salt, because we’re squarely in the realm of the hypothetical here, and there’s plenty of room for holes to be poked.
Rotating black holes can implement quantum gates and quantum circuits, like Bell states, which are quantum counterparts of the classical computer programing.
The black holes sparked the public imagination for almost 100 years. Their presence in the universe has been debated for long; however, the detection of X-ray radiation coming from the center of the galaxies has put an end to the discussion and undoubtedly proven their existence.
The vast majority, if not all, of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material around them. Black holes emit X-ray radiation, light with high energy, due to the extreme gravity in their vicinity. X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.
A recent article posted in the pre-printed arXiv (“Photonic Bell states creation around rotating black holes”) argues that X-ray radiation coming from fast spinning black holes encompasses quantum information.