What is the deepest level of reality? In this Quanta explainer, Vijay Balasubramanian, a physicist at the University of Pennsylvania, takes us on a journey through space-time to investigate what it’s made of, why it’s failing us, and where physics can go next.
00:00 — The Planck length, an intro to space-time. 1:23 — Descartes and Newton investigate space and time. 2:04 — Einstein’s special relativity. 2:32 — The geometry of space-time and the manifold. 3:16 — Einstein’s general relativity: space-time in four dimensions. 3:35 — The mathematical curvature of space-time. 4:57 — Einstein’s field equation. 6:04 — Singularities: where general relativity fails. 6:50 — Quantum mechanics (amplitudes, entanglement, Schrödinger equation) 8:32 — The problem of quantum gravity. 9:38 — Applying quantum mechanics to our manifold. 10:36 — Why particle accelerators can’t test quantum gravity. 11:28 — Is there something deeper than space-time? 11:45 — Hawking and Bekenstein discover black holes have entropy. 13:54 — The holographic principle. 14:49 — AdS/CFT duality. 16:06 — Space-time may emerge from entanglement. 17:44 — The path to quantum gravity.
——- VISIT our website: https://www.quantamagazine.org. LIKE us on Facebook: / quantanews. FOLLOW us Twitter: / quantamagazine.
Sir Roger Penrose, a name synonymous with genius, has tirelessly pursued the secrets of the universe with the fervour of a true renaissance seer. His intellectual contributions span a breathtaking range, from the intricate beauty of Penrose tilings to the vast expanse of cosmology, and even the enigmatic depths of human consciousness.
Apple TV+ is ringing in the New Year by offering an all-access pass to customers all around the world. Enjoy Apple TV+ for free the first weekend of 2025 (January 3 through January 5), Apple TV+ will be free on any device where Apple TV+ is available. All you need is an Apple ID to see what all the buzz is about.
Kick off 2025 by streaming Apple’s acclaimed originals, including buzzy new seasons of “Silo,” “Shrinking” and “Bad Sisters,” the twisty, riveting “Presumed Innocent,” Golden Globe nominees “Slow Horses” and “Disclaimer,” and award-winning hits like “The Morning Show” and “Ted Lasso.” Plus, catch up on global phenomenon “Severance” before its second season debut; get your mind blown by celebrated sci-fi series like “Dark Matter,” “For All Mankind” and “Foundation”; discover movies for the whole family like “Fly Me to the Moon” and “The Family Plan”; and action-packed hit features like “Wolfs” and “The Instigators.”
Tachyons, the hypothetical particles that travel faster than light, have long fascinated scientists and enthusiasts. In this video, we explore how the McGinty Equation (MEQ) serves as a groundbreaking tool in understanding these elusive particles. Delve into the world of quantum mechanics, fractal geometry, and gravity as we uncover the potential of tachyons to revolutionize science and technology. From their intriguing properties, such as imaginary mass and energy reduction at high speeds, to their implications for faster-than-light communication and interstellar exploration, this video is a journey into uncharted territories of physics.
We also discuss the quest to detect tachyons, innovative experimental methods, and the role of MEQ in guiding researchers. Could tachyons be the key to unlocking new dimensions, explaining dark matter and energy, or understanding the origins of the universe? Join us in this deep dive into the unknown and discover the potential future of tachyon research.
Using the Very Large Array (VLA), an international team of astronomers have observed a nearby galaxy merger known as CIZA J0107.7+5408. Results of the observational campaign, presented December 20 on the preprint server arXiv, could help us better understand the merging processes that take place between galaxy clusters.
Galaxy clusters contain up to thousands of galaxies bound together by gravity. They generally form as a result of mergers and grow by accreting sub-clusters. These processes provide an excellent opportunity to study matter in conditions that cannot be explored in laboratories on Earth. In particular, merging galaxy clusters could help us better understand the physics of shock and cold fronts seen in the diffuse intra-cluster medium, the cosmic ray acceleration in clusters, and the self-interaction properties of dark matter.
At a redshift of approximately 0.1, CIZA J0107.7+5408, or CIZA0107 for short, is a nearby, post-core passage, dissociative binary cluster merger. It is a large, roughly equal mass disturbed system consisting of two subclusters, hosting two optical density peaks, with associated but offset X-ray emission peaks.
Einstein’s theory of general relativity describes the inevitability of singularities, which are obscured by black holes according to Penrose’s cosmic censorship conjecture.
Recent studies indicate that quantum mechanics might reinforce this idea, proposing a quantum Penrose inequality that relates entropy to space-time metrics in the vicinity of black holes.
Synchronicity!😉 Just a few hours ago I watched a video which stated that the philosopher Henri Bergson argued our linear perception of time limited our ability to appreciate the relationship between time and consciousness.
What if our understanding of time as a linear sequence of events is merely an illusion created by the brain’s processing of reality? Could time itself be an emergent phenomenon, arising from the complex interplay of quantum mechanics, relativity, and consciousness? How might the brain’s multidimensional computations, reflecting patterns found in the universe, reveal a deeper connection between mind and cosmos? Could Quantum AI and Reversible Quantum Computing provide the tools to simulate, manipulate, and even reshape the flow of time, offering practical applications of D-Theory that bridge the gap between theoretical physics and transformative technologies? These profound questions lie at the heart of Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time, 2025 paper and book by Alex M. Vikoulov. D-Theory, also referred to as Quantum Temporal Mechanics, Digital Presentism, and D-Series, challenges conventional views of time as a fixed, universal backdrop to reality and instead redefines it as a dynamic interplay between the mind and the cosmos.
Time, as experienced by humans, is more than a sequence of events dictated by physical laws. It emerges from our awareness of change, a psychological construct shaped by consciousness. Recent advancements in neuroscience, quantum physics, and cognitive science reveal fascinating parallels between the brain and the universe. Studies suggest that neural processes operate in up to 11 dimensions, echoing M-Theory’s depiction of a multiverse with similar dimensionality. These insights hint at a profound structural resemblance, where the brain and the cosmos mirror each other as interconnected systems of information processing.
Quantum Temporal Mechanics goes further, positing that consciousness not only perceives time but actively participates in its manifestation. In quantum theory, the observer plays a pivotal role in collapsing wavefunctions, a process that may extend beyond the microcosm to the fabric of reality itself. Various interpretations of quantum mechanics, such as Quantum Bayesianism and Consciousness Causes Collapse theory, support the idea that the observer’s awareness helps shape how time unfolds. In this framework, the flow of time becomes a participatory phenomenon, where consciousness and the universe co-create the temporal experience.
The implications of this perspective are far-reaching. By placing consciousness at the center of temporal reality, D-Theory suggests that the universe operates as a self-simulating quantum neural network—a vast, intelligent system continuously evolving and self-regulating. Reality itself becomes an active, dynamic process in which every quantum event contributes to the universe’s collective intelligence, much like neurons firing in a biological brain. This conceptualization reimagines the universe as a living, thinking entity, where time, space, and experience are constructs shaped by a universal consciousness.