Toggle light / dark theme

The fact that our Universe is expanding was discovered almost a hundred years ago, but how exactly this happens, scientists realized only in the 90s of the last century, when powerful telescopes (including orbital ones) appeared and the era of exact cosmo.

International Journal of Modern Physics has published an article by the IKBFU Physics and Mathematics Institute Artyom Astashenok and the Institute’s MA student Alexander Teplyakov. The article refers to the issue of the “Dark Enegry” and an assumption is made that the Universe has borders.

Artyom Astashenok told:

Next time you eat a blueberry (or chocolate chip) muffin consider what happened to the blueberries in the batter as it was baked. The blueberries started off all squished together, but as the muffin expanded they started to move away from each other. If you could sit on one blueberry you would see all the others moving away from you, but the same would be true for any blueberry you chose. In this sense galaxies are a lot like blueberries.

Since the Big Bang, the universe has been expanding. The strange fact is that there is no single place from which the universe is expanding, but rather all galaxies are (on average) moving away from all the others. From our perspective in the Milky Way galaxy, it seems as though most galaxies are moving away from us – as if we are the centre of our muffin-like universe. But it would look exactly the same from any other galaxy – everything is moving away from everything else.

To make matters even more confusing, new observations suggest that the rate of this expansion in the universe may be different depending on how far away you look back in time. This new data, published in the Astrophysical Journal, indicates that it may time to revise our understanding of the cosmos.

A physicist from RUDN University has proposed a new theoretical model for the interaction of spinor and gravitational fields. He considered the evolution of the universe within one of the variants of the widespread Bianchi cosmological model. In this case, a change in the calculated field parameters led to changes in the evolution of the universe under consideration. Upon reaching certain values, it began to shrink down to the Big Bang. The article was published in the journal The European Physical Journal Plus.

The spinor field is characterized by its behavior in interaction with gravitational fields. Dr. Bijan Saha of RUDN University focused on the study of a nonlinear spinor field. With its help, he explained the accelerated expansion of the universe. The study of a spinor field with a non-minimal coupling made it possible to describe not only the expansion of the universe, but also its subsequent contraction and the resulting Big Bang within the framework of the standard Bianchi .

The basic calculations performed by Bijan Saha allow moving away from the isotropic of the Friedman-Robertson-Walker universe (FRW) that is most often used. According to this traditional model, the properties of the universe are independent of the direction in which they are considered. The physicist has put forward an alternative: an anisotropic model in which such dependence exists. On the one hand, the “classical” isotropic model describes the of the modern universe with great precision. On the other hand, there are theoretical arguments and that lead to the conclusion that an anisotropic phase existed in the distant past.

If you were to travel back in time to kill your grandparents — let’s ignore the ‘why’ here, for the sake of argument — you would never have been born. Which means there was nobody to kill your grandparents. Which means you were actually born after all, which… hold up, what’s going on here?!

These kinds of brain-breaking paradoxes have been puzzling us forever, inspiring stories ranging from “Back to the Future” to “Hot Tub Time Machine.”

Now, New Scientist reports that physicists Barak Shoshany and Jacob Hauser from the Perimeter Institute in Canada have come up with an apparent solution to these types of paradoxes that requires a very large — but not necessarily infinite — number of parallel universes.