What happens if you turn space-time upside-down?
A cycle of false tabloid claims that NASA had discovered a “parallel universe” papered over a far deeper story about particles, the cosmos, and what happens when you turn spacetime upside-down.
What happens if you turn space-time upside-down?
A cycle of false tabloid claims that NASA had discovered a “parallel universe” papered over a far deeper story about particles, the cosmos, and what happens when you turn spacetime upside-down.
The Hubble hits keep on coming.
The Hubble Space Telescope checked in on a supernova over the course of a year, watching the bright explosion gradually dim.
NASA and ESA watched the remnants of a star go from the radiance of 5 billion suns to almost nothing over the course of a year.
Gravitational Wave Propulsion 🤔 ⤵️ check the abstract.
This paper sums up aftereffects of past examinations, including proposed models, so as to construct an advanced hypothetical structure for Gravitational Wave Propulsion. The structure com prises of groups of generators of gravitational waves, which have been hypothesized yet require experimentation, and models of push age. High effectiveness generators depend on cognizant sources, for example synchronized MEMS oscillators, the HTSC Gaser, in light of cognizant turn 2 changes in s-wave/d-wave super conductors, and the atomic electromagnetic wave to gravitational wave up-changing over transducer, in view of dineutrons. After gravitational wave age is effectively demonstrated in the research center, it will be pos-sible to apply an idea created in the field of cosmology. It was discovered that the back-ground vitality thick ness may offer mass to the graviton, which thus may permit gravi tons to produce push. Nearby foundation vitality thickness can be expanded by accusing materials of high dielectric steady in close ness to the wave producing components. Centered Gravitational Waves may likewise create singularities, where the radiation is changed over into a coulomb-like gravitational field. Gravitation al singularities will set a n-body floating framework among them selves, the rocket, and the rest of the assortments of the universe, with clear propulsive impacts. Uses of the current examination will prompt an extraordinary drive framework fit for empowering the quick investigation of the nearby planetary group, the neigh borhood star framework, and potentially the entire system. On a general basis, a vehicle traveling in space requires energy and a reaction mass to accelerate and reach useful speeds. Usually the reaction mass is the mass of the pro- pellant, which in most circumstances has also the role of energy source. Vehicles that are not required to carry re- action masses are more efficient and light weight, but con- ventional ones are limited in scope. It is a fact that, after extraordinary developments, space travel by rocket tech nology has reached its limits and a new paradigm is re- quired to make a big step forward in space propulsion; a step that should enable the exploration of nearby star systems and possibly the whole galaxy. These goals may seem unreachable with the current understanding of physics. Anyway with an open mind and a prag matic approach, it is well known that we are dealing with opinions that are often suggested by the lack of interdisciplinary approach es to complex problems. It often happened that when so called theoretical limits were found wrong, accidental dis- coveries have shown why the good theory was errone- ously applied the first time. An alternative to accidental discoveries are pieces of knowl Review on Gravitational wave propulsion Ching Lee University of Trento, Italy edge gathered from hun- dreds of research papers from different disciplines com- bined in an unusual way to create new concepts. They are normally rejected by experts of their single research field, thus painstaking efforts are required to simply communi- cate the new concept and let it grow in the laboratories. At the and of the last century numerous theoretical efforts have started to show that Gravitational Waves (GWs) have not only astronomical and astrophysicalrelevance, but they also have technological applica tions. Among them, sev- eral theories have approaches identified for telecommuni- cation, imaging, material processing, and space propul- sion. This paper summarizes results of past analyses, in cluding proposed examples, in order to build a modern theoreti cal framework for Gravitational Wave Propulsion. The framework consists of families of generators of gravitational waves, which have been theorized but still require experimentation, and models of thrust generation. High efficiency generators are based on co herent sources, for instance synchronized MEMS oscillators, the HTSC Gaser, based on coherent spin-2 transitions in s-wave/d wave superconductors, and the nuclear electromagnetic wave to gravitational wave up-converting transducer, based on dineutrons. After gravitational wave generation is successfully proven in the laboratory, it will be pos- sible to apply a concept developed in the field of cosmology. It was found that the back- ground energy density may give mass to the graviton, which in turn may allow gravitons to produce thrust. Local background energy density can be increased by charging materials with high dielectric constant in close proximity to the wave generating elements. Focused Gravita tional Waves may also produce singularities, where the radiation is converted into a coulomb-like gravitational field. Gravitational singularities will set an n-body gravitating system among them selves, the spacecraft, and the remaining bodies of the universe, with obvious propulsive effects. Applications of the present anal ysis will lead to a unique propulsion system capable of enabling the fast exploration of the solar system, the local star system, and possibly the whole galaxy proposed models, so as to construct an advanced hypothetical structure for Gravitational Wave Propulsion. The structure com prises of groups of generators of gravitational waves, which have been hypothesized yet require experimentation, and models of push age. High effectiveness generators depend on cognizant sources, for example synchronized MEMS oscillators, the HTSC Gaser, in light of cognizant turn 2 changes in s-wave/d-wave super conductors, and the atomic electromagnetic wave to gravitational wave up-changing over transducer, in view of dineutrons. After gravitational wave age is effectively demonstrated in the research center, it will be pos-sible to apply an idea created in the field of cosmology. It was discovered that the back-ground vitality thick ness may offer mass to the graviton, which thus may permit gravi tons to produce push. Nearby foundation vitality thickness can be expanded by accusing materials of high dielectric steady in close ness to the wave producing components. Centered Gravitational Waves may likewise create singularities, where the radiation is changed over into a coulomb-like gravitational field. Gravitation al singularities will set a n-body floating framework among them selves, the rocket, and the rest of the assortments of the universe, with clear propulsive impacts. Uses of the current examination will prompt an extraordinary drive framework fit for empowering the quick investigation of the nearby planetary group, the neigh borhood star framework, and potentially the entire system. On a general basis, a vehicle traveling in space requires energy and a reaction mass to accelerate and reach useful speeds. Usually the reaction mass is the mass of the pro- pellant, which in most circumstances has also the role of energy source. Vehicles that are not required to carry re- action masses are more efficient and light weight, but con- ventional ones are limited in scope. It is a fact that, after extraordinary developments, space travel by rocket tech nology has reached its limits and a new paradigm is re- quired to make a big step forward in space propulsion; a step that should enable the exploration of nearby star systems and possibly the whole galaxy. These goals may seem unreachable with the current understanding of physics. Anyway with an open mind and a prag matic approach, it is well known that we are dealing with opinions that are often suggested by the lack of interdisciplinary approach es to complex problems. It often happened that when so called theoretical limits were found wrong, accidental dis- coveries have shown why the good theory was errone- ously applied the first time. An alternative to accidental discoveries are pieces of knowl Review on Gravitational wave propulsion Ching Lee University of Trento, Italy edge gathered from hun- dreds of research papers from different disciplines com- bined in an unusual way to create new concepts. They are normally rejected by experts of their single research field, thus painstaking efforts are required to simply communi- cate the new concept and let it grow in the laboratories. At the and of the last century numerous theoretical efforts have started to show that Gravitational Waves (GWs) have not only astronomical and astrophysicalrelevance, but they also have technological applica tions. Among them, sev- eral theories have approaches identified for telecommuni- cation, imaging, material processing, and space propul- sion. This paper summarizes results of past analyses, in cluding proposed examples, in order to build a modern theoreti cal framework for Gravitational Wave Propulsion. The framework consists of families of generators of gravitational waves, which have been theorized but still require experimentation, and models of thrust generation. High efficiency generators are based on co herent sources, for instance synchronized MEMS oscillators, the HTSC Gaser, based on coherent spin-2 transitions in s-wave/d wave superconductors, and the nuclear electromagnetic wave to gravitational wave up-converting transducer, based on dineutrons. After gravitational wave generation is successfully proven in the laboratory, it will be pos- sible to apply a concept developed in the field of cosmology. It was found that the back- ground energy density may give mass to the graviton, which in turn may allow gravitons to produce thrust. Local background energy density can be increased by charging materials with high dielectric constant in close proximity to the wave generating elements. Focused Gravita tional Waves may also produce singularities, where the radiation is converted into a coulomb-like gravitational field. Gravitational singularities will set an n-body gravitating system among them selves, the spacecraft, and the remaining bodies of the universe, with obvious propulsive effects. Applications of the present anal ysis will lead to a unique propulsion system capable of enabling the fast exploration of the solar system, the local star system, and possibly the whole galaxy.
O,.o.
Albert Einstein described black holes as strange objects “where God divided by zero.” An international team of astrophysicists has now confirmed that black holes are a distinct “species” from neutron stars –comparable to black holes in mass and size but confined within a hard surface, unlike black holes, an exotic cosmic object without a hard surface predicted by Einstein’s theory of General Relativity that do not have a surface, and are confined within an invisible boundary, called an event horizon, from within which nothing, not even light, can escape.
Hidden in NASA Archival X-ray Data
Definitive proof of the existence of such objects, “a holy grail of modern physics and astronomy,’ reports the Tata Institute of Fundamental Research, has been achieved by an international team who revealed by far the strongest steady signature of stellar-mass black holes to date. Using the archival X-ray data from the now decommissioned astronomy satellite Rossi X-Ray Timing Explorer, that probed the extreme environments around white dwarfs, neutron stars, black holes, the team identified the effect of the lack of hard surface on the observed X-ray emission, and thus have found an extremely strong signature of accreting stellar-mass black holes.
There’s some amazing science happening at the South Pole, but some very grandiose claims being made. What’s actually going on?
A top goal in cosmology is to precisely measure the total amount of matter in the universe, a daunting exercise for even the most mathematically proficient. A team led by scientists at the University of California, Riverside, has now done just that.
Reporting in the Astrophysical Journal, the team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy.
“To put that amount of matter in context, if all the matter in the universe were spread out evenly across space, it would correspond to an average mass density equal to only about six hydrogen atoms per cubic meter,” said first author Mohamed Abdullah, a graduate student in the UCR Department of Physics and Astronomy. “However, since we know 80% of matter is actually dark matter, in reality, most of this matter consists not of hydrogen atoms but rather of a type of matter which cosmologists don’t yet understand.”
#DigitalTheology #TheologyofDigitalPhysics #PhenomenalConsciousness #CosmicSelf #HolographicPrinciple #DigitalPhysics #theology #pantheism #consciousness
Since we live in a world which isn’t random, but organized at every level, a role for consciousness seems unavoidable. The ‘digital theologian’ shows us compelling evidence from quantum mechanics, mathematics and computer sciences, which not only aligns with a philosophical worldview of the Primacy of Consciousness, but which also assigns a role to information as its modus operandi.
It is quantum mechanics which appears to connect the Universe as a whole to consciousness. A whole, which is more than the sum of its parts and irreducible to mere assumptions deriving from the anatomizing dissection into mental confabulations. Drawing from the holographic principle, perceptroniums and noocentrism, Alex provides crucial keys to unlock the mystery of consciousness to show us how our local consciousness can arise from a non-local cosmic consciousness network.
Carefully building his fortress of arguments, Alex gathers his building bricks from various areas of scientific exploration, ranging from the role of language and tools in the development of our consciousness, the physics of time and epigenetics. Traditional Darwinism and reductive materialism become so challenged, that we become bound to agree with Terence McKenna’s statement that “object fetishism is completely bankrupt.” All these threads are then skillfully woven into the irresistible attractor and only logical conclusion, or Digital Pantheism and Omega Point Cosmology. And with this thus synthesized Apotheosis, Vikoulov brings the architecture of his chef-d’oeuvre to full fruition.
Gravitational wave detectors have opened a new window to the universe by measuring the ripples in spacetime produced by colliding black holes and neutron stars, but they are ultimately limited by quantum fluctuations induced by light reflecting off of mirrors. LSU Ph.D. physics alumnus Jonathan Cripe and his team of LSU researchers have conducted a new experiment with scientists from Caltech and Thorlabs to explore a way to cancel this quantum backaction and improve detector sensitivity.
In a new paper in Physical Review X, the investigators present a method for removing quantum backaction in a simplified system using a mirror the size of a human hair and show the motion of the mirror is reduced in agreement with theoretical predictions. The research was supported by the National Science Foundation.
Despite using 40-kilogram mirrors for detecting passing gravitational waves, quantum fluctuations of light disturb the position of the mirrors when the light is reflected. As gravitational wave detectors continue to grow more sensitive with incremental upgrades, this quantum backaction will become a fundamental limit to the detectors’ sensitivity, hampering their ability to extract astrophysical information from gravitational waves.