Toggle light / dark theme

For decades, researchers assumed the cosmic rays that regularly bombard Earth from the far reaches of the galaxy are born when stars go supernova — when they grow too massive to support the fusion occurring at their cores and explode.

Those gigantic explosions do indeed propel atomic particles at the speed of light great distances. However, new research suggests even supernovae — capable of devouring entire solar systems — are not strong enough to imbue particles with the sustained energies needed to reach petaelectronvolts (PeVs), the amount of kinetic energy attained by very high-energy cosmic rays.

And yet cosmic rays have been observed striking Earth’s atmosphere at exactly those velocities, their passage marked, for example, by the detection tanks at the High-Altitude Water Cherenkov (HAWC) observatory near Puebla, Mexico. Instead of supernovae, the researchers posit that star clusters like the Cygnus Cocoon serve as PeVatrons — PeV accelerators — capable of moving particles across the galaxy at such high energy rates.

TOWARDS a METAMATERIALLY-BASED ANALOGUE SENSOR FOR TELESCOPE EYEPIECES jeremy batterson.

(NB: Those familiar with photography or telescopy can skip over the “elements of a system,” since they will already know this.)

In many telescopic applications, what is desired is not a more magnified image, but a brighter image. Some astronomical objects, such as the Andromeda galaxy or famous nebulae like M42 are very large in apparent size, but very faint. If the human eye could see the Andromeda galaxy, it would appear four times wider than the Moon. The great Orion nebula M42 is twice the apparent diameter of the Moon.

Astrophotographers have an advantage over visual astronomers in that their digital sensors can be wider than the human pupil, and thus can accommodate larger exit pupils for brighter images.

How can you possibly use simulations to reconstruct the history of the entire universe using only a small sample of galaxy observations? Through big data, that’s how.

Theoretically, we understand a lot of the physics of the history and evolution of the universe. We know that the universe used to be a lot smaller, denser, and hotter in the past. We know that its expansion is accelerating today. We know that the universe is made of very different things, including galaxies (which we can see) and dark matter (which we can’t).

We know that the largest structures in the universe have evolved slowly over time, starting as just small seeds and building up over billions of years through gravitational attraction.

With the help of the European Southern Observatory’s Very Large Telescope (ESO ’s VLT), astronomers have discovered and studied in detail the most distant source of radio emission known to date. The source is a “radio-loud” quasar — a bright object with powerful jets emitting at radio wavelengths — that is so far away its light has taken 13 billion years to reach us. The discovery could provide important clues to help astronomers understand the early Universe.

Quasars are very bright objects that lie at the center of some galaxies and are powered by supermassive black holes. As the black hole consumes the surrounding gas, energy is released, allowing astronomers to spot them even when they are very far away.

The newly discovered quasar, nicknamed P172+18, is so distant that light from it has traveled for about 13 billion years to reach us: we see it as it was when the Universe was just around 780 million years old. While more distant quasars have been discovered, this is the first time astronomers have been able to identify the telltale signatures of radio jets in a quasar this early on in the history of the Universe. Only about 10% of quasars — which astronomers classify as “radio-loud” — have jets, which shine brightly at radio frequencies.[1].

On 21 May 2019, from a distance of 7 billion light-years away, our gravitational wave detectors were rocked by the most massive collision yet. From analysis of the signal, astronomers concluded that the detection was the result of two black holes smashing together, weighing in at 66 and 85 times the mass of the Sun respectively.

But what if it was something else? A new study offers a different interpretation of the event. It’s possible, according to an international team of astrophysicists, that the two objects were not black holes at all, but mysterious, theoretical objects called boson stars — potentially made up of elusive candidates for dark matter.

The gravitational wave event, called GW 190521, was a spectacular discovery. The object that resulted from the merger of the two objects would have been a black hole at around 142 times the mass of the Sun — within the intermediate mass range that no black hole had ever been detected before, called the black hole upper mass gap.