Menu

Blog

Archive for the ‘cosmology’ category: Page 262

Dec 12, 2020

An outside-the-box take on time

Posted by in categories: cosmology, education, physics

The history of the Universe thus far has certainly been eventful, marked by the primordial forging of the light elements, the birth of the first stars and their violent deaths, and the improbable origin of life on Earth. But will the excitement continue, or are we headed toward the ultimate mundanity of equilibrium in a so-called heat death? In The Janus Point, Julian Barbour takes on this and other fundamental questions, offering the reader a new perspective—illustrated with lucid examples and poetically constructed prose—on how the Universe started (or more precisely, how it did not start) and where it may be headed. This book is an engaging read, which both taught me something new about meat-and-potatoes physics and reminded me why asking fundamental questions can be so fun.

Barbour argues that there is no beginning of time. The Big Bang, he maintains, was just a very special configuration of the Universe’s fundamental building blocks, a shape he calls the Janus point. As we move away from this point, the shape changes, marking the passage of time. The “future,” he argues, lies in both directions, hence the reference to Janus, the two-faced Roman god of beginnings and transitions.

Barbour illustrates his main points with a deceptively simple model known as the three-body problem, wherein three masses are subject to mutual gravitational attraction. In this context, the Janus point occurs when all three masses momentarily occupy the same point, in what is called a total collision. The special shape at the Janus point, explains Barbour, is an equilateral triangle, which is his model’s version of the Big Bang. I found this imagery helpful when trying to understand the more abstract, and necessarily less technical, application of this concept to general relativity.

Dec 12, 2020

Black Holes Gain new Powers When They Spin Fast Enough

Posted by in categories: cosmology, mathematics, quantum physics

Fast spinning black holes could have features different from those predicted by general relativity.


General relativity is a profoundly complex mathematical theory, but its description of black holes is amazingly simple. A stable black hole can be described by just three properties: its mass, its electric charge, and its rotation or spin. Since black holes aren’t likely to have much charge, it really takes just two properties. If you know a black hole’s mass and spin, you know all there is to know about the black hole.

This property is often summarized by the no-hair theorem. Specifically, the theorem asserts that once matter falls into a black hole, the only characteristic that remains is mass. You could make a black hole out of a Sun’s worth of hydrogen, chairs, or those old copies of National Geographic from Grandma’s attic, and there would be no difference. Mass is mass as far as general relativity is concerned. In every case the event horizon of a black hole is perfectly smooth, with no extra features. As Jacob Bekenstein said, black holes have no hair.

Continue reading “Black Holes Gain new Powers When They Spin Fast Enough” »

Dec 10, 2020

Black Hole Jets Could Be Fueled by Strange ‘Negative Energy’, Astronomers Find

Posted by in categories: computing, cosmology, particle physics

When a black hole is actively feeding, something strange can be observed: enormously powerful jets of plasma shoot from its poles, at velocities approaching light speed.

Given the intense gravitational interactions at play, exactly how those jets form is a mystery. But now, using computer simulations, a team of physicists has hit upon an answer — particles seeming to have “negative energy” extract energy from the black hole and redirect it to the jets.

And this theory has, for the first time, united two different and seemingly irreconcilable theories about how energy can be extracted from a black hole.

Dec 10, 2020

Black Hole Atom as a Dark Matter Particle Candidate

Posted by in categories: cosmology, particle physics, quantum physics

Circa 2014


We propose the new dark matter particle candidate—the “black hole atom,” which is an atom with the charged black hole as an atomic nucleus and electrons in the bound internal quantum states. As a simplified model we consider the central Reissner-Nordström black hole with the electric charge neutralized by the internal electrons in bound quantum states. For the external observers these objects would look like the electrically neutral Schwarzschild black holes. We suppose the prolific production of black hole atoms under specific conditions in the early universe.

Dec 10, 2020

Black Holes Are ‘Portals to Other Universes,’ According to New Quantum Results

Posted by in categories: cosmology, quantum physics, singularity

O,.o.


Black holes may not end in a crushing singularity as previously thought, but rather open up passageways into whole other universes.

Dec 10, 2020

Supernova Surprise Creates Elemental Mystery – Most Important Reaction in the Universe Can Get a Huge and Unexpected Boost

Posted by in categories: computing, cosmology

Michigan State University researchers have discovered that one of the most important reactions in the universe can get a huge and unexpected boost inside exploding stars known as supernovae.

This finding also challenges ideas behind how some of the Earth’s heavy elements are made. In particular, it upends a theory explaining the planet’s unusually high amounts of some forms, or isotopes, of the elements ruthenium and molybdenum.

“It’s surprising,” said Luke Roberts, an assistant professor at the Facility for Rare Isotope Beams and the Department of Physics and Astronomy, at MSU. Roberts implemented the computer code that the team used to model the environment inside a supernova. “We certainly spent a lot of time making sure the results were correct.”

Dec 7, 2020

MIT’s ABRACADABRA Instrument: Pulling the Secrets of Dark Matter Out of a Hat

Posted by in categories: cosmology, particle physics

MIT grad student Chiara Salemi and Professor Lindley Winslow use the ABRACADABRA instrument to reveal insights into dark matter.

On the first floor of MIT’s Laboratory for Nuclear Science hangs an instrument called “A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus,” or ABRACADABRA for short. As the name states, ABRACADABRA’s goal is to detect axions, a hypothetical particle that may be the primary constituent of dark matter, the unseen and as-of-yet unexplained material that makes up the bulk of the universe.

Dec 5, 2020

Earth faster, closer to Milky Way black hole, than previously thought

Posted by in category: cosmology

A new survey of our galaxy by astronomers with VERA in Japan has shown that Earth is both moving faster and is closer to the supermassive black hole at the center of our galaxy than previously thought. But don’t worry, our planet is safe!

Dec 5, 2020

Researchers observe what could be the first hints of dark bosons

Posted by in categories: cosmology, particle physics

Extremely light and weakly interacting particles may play a crucial role in cosmology and in the ongoing search for dark matter. Unfortunately, however, these particles have so far proved very difficult to detect using existing high-energy colliders. Researchers worldwide have thus been trying to develop alternative technologies and methods that could enable the detection of these particles.

Over the past few years, collaborations between particle and atomic physicists working at different institutes worldwide have led to the development of a new technique that could be used to detect interactions between very light bosons and neutrons or electrons. Light bosons, in fact, should change the energy levels of electrons in atoms and ions, a change that could be detectable using the technique proposed by these teams of researchers.

Using this method, two different research groups (one at Aarhus University in Denmark and the other at Massachusetts Institute of Technology) recently performed experiments aimed at gathering hints of the existence of dark bosons, elusive particles that are among the most promising dark matter candidates or mediators to a dark sector. Their findings, published in Physical Review Letters, could have important implications for future dark matter experiments.

Dec 3, 2020

Astronomers Discover Hidden Black Hole “Near” Earth – Closest Ever Found to Our Solar System

Posted by in categories: cosmology, futurism

An antimatter laser can turn matter in the black hole into energy.


Invisible object has two companion stars visible to the naked eye.

Continue reading “Astronomers Discover Hidden Black Hole ‘Near’ Earth – Closest Ever Found to Our Solar System” »