The results of new simulations negate the argument that some objects thought to be black holes are instead hypothetical exotic systems called bosonic stars.

Experts assembling sPHENIX, a state-of-the-art particle detector at the U.S. Department of Energy’s Brookhaven National Laboratory, successfully installed a major tracking component on Jan. 19. The Time Projection Chamber, or TPC, is one of the final pieces to move into place before sPHENIX begins tracking particle smash-ups at the Relativistic Heavy Ion Collider (RHIC) this spring.
The TPC is a gas-filled detector that, combined with the detector’s strong magnetic field, allows nuclear physicists to measure the momentum of charged particles streaming from RHIC collisions. It is one of many detector components that nuclear physicists will use to glean more information about the quark-gluon plasma (QGP)—a primordial soup made up of matter’s fundamental building blocks, quarks and gluons.
“QGP existed at the dawn of the universe some 14 billion years ago, about a millionth of a second after the Big Bang,” said Thomas Hemmick, a physicist at Stony Brook University (SBU) and a collaborator on RHIC research “RHIC’s collisions and sPHENIX’s ability to capture snapshots of particles traversing the QGP will help scientists understand how quarks and gluons cooled and coalesced to form the protons and neutrons that make up the atomic nuclei of all visible matter in the universe today.”
https://youtube.com/watch?v=V8cPdjO3a_U&feature=share
Find out what the world will be like a million years from now, as well as what kind of technology we’ll have available.
► All-New Echo Dot (5th Generation) | Smart Speaker with Clock and Alexa | Cloud Blue: https://amzn.to/3ISUX1u.
► Brilliant: Interactive Science And Math Learning: https://bit.ly/JasperAITechUniNet.
Timestamps:
0:00 No Physical Bodies.
1:51 Wormhole Creation.
2:44 Travel At Speed Of Light.
3:21 Type 3 Civilization.
4:52 Gravitational Waves.
5:46 Computers the Size of Planets.
6:56 Computronium.
I explain the following ideas on this channel:
* Technology trends, both current and anticipated.
* Popular business technology.
* The Impact of Artificial Intelligence.
* Innovation In Space and New Scientific Discoveries.
* Entrepreneurial and Business Innovation.
Subscribe link.
https://www.youtube.com/channel/UCpaciBakZZlS3mbn9bHqTEw.
Disclaimer:
Some of the links contained in this description are affiliate links.
As an Amazon Associate, I get commissions on orders that qualify.
This video describes the world and its technologies in a million years. Future technology, future technologies, tech universe, computronium, the world in a million years, digital immortality, wormhole, wormholes, faster than light, type 3 civilization, control gravity, planet sized computer, black hole energy extraction, black hole, black hole energy, and so on.
Evolution’s rapid pace after the Cambrian explosion
Though the work of Schopf and other paleobiologists continues to fill in the Precambrian fossil record, questions remain about the pace of the Cambrian explosion. What triggered life to evolve so fast?
The question has intrigued scientists of many disciplines for decades. Interdisciplinary collaboration has wrought a wealth of evidence from diverse perspectives — geochemical, paleoenvironmental, geological, anatomical, and taxonomic — that describes how biological organisms evolved in concert with changing environmental conditions.
Three years ago, the study of black holes was revolutionized. Now, the team is turning to the closest supermassive black hole to Earth — the one at the center of the Milky Way.
Dark photons, a hypothetical form of dark matter, could explain the heating discrepancy in intergalactic gas. Read on to discover the exciting potential of dark photons in explaining the mysteries of the universe!
After crunching a mountain of astronomy data, Clarissa Pavao, an undergraduate at Embry-Riddle Aeronautical University’s Prescott, Arizona campus, submitted her preliminary analysis. Her mentor’s response was swift and in all-caps: “THERE’S AN ORBIT!” he wrote.
That was when Pavao, a senior space physics major, realized she was about to become a part of something big—a paper in the journal Nature that describes a rare binary star system with uncommon features.
The paper, published on Feb. 1, 2023, and co-authored with Dr. Noel D. Richardson, assistant professor of Physics and Astronomy at Embry-Riddle, describes a twin-star system that is luminous with X-rays and high in mass. Featuring a weirdly circular orbit—an oddity among binaries—the twin system seems to have formed when an exploding star or supernova fizzled out without the usual bang, similar to a dud firecracker.
Think of bringing a pot of water to the boil: As the temperature reaches the boiling point, bubbles form in the water, burst and evaporate as the water boils. This continues until there is no more water changing phase from liquid to steam.
This is roughly the idea of what happened in the very early universe, right after the Big Bang, 13.7 billion years ago.
The idea comes from particle physicists Martin S. Sloth from the Center for Cosmology and Particle Physics Phenomenology at University of Southern Denmark and Florian Niedermann from the Nordic Institute for Theoretical Physics (NORDITA) in Stockholm. Niedermann is a previous postdoc in Sloth’s research group. In this new scientific article, they present an even stronger basis for their idea.