Toggle light / dark theme

Researchers from the University of Oxford have contributed to a major international study which has captured a rare and fascinating space phenomenon: binary star systems. The study, “A shared accretion instability for black holes and neutron stars,” has been published in Nature.

Scientists have long been intrigued by X-ray binary star systems, where two stars orbit around each other with one of the two stars being either a black hole or a star. Both and are created in supernova explosions and are very dense—giving them a massive gravitational pull. This makes them capable of capturing the outer layers of the normal star that orbits around it in the binary system, seen as a rotating disk of matter (mimicking a whirlpool) around the black hole/neutron star.

According to theoretical calculations, these rotating disks should show a dynamic instability: about once an hour, the inner parts of the disk rapidly fall onto the black hole/neutron star, after which these inner regions re-fill and the process repeats. Up to now, this violent and extreme process had only been directly observed once, in a black hole binary system. For the first time, it has now been seen in a neutron star binary system, called Swift J1858.6–0814. This discovery demonstrates that this instability is a general property of these disks (and not caused by the presence of a black hole).

Claim your SPECIAL OFFER for MagellanTV here: https://try.magellantv.com/arvinash Start your free trial TODAY so you can watch The Most Powerful Black Holes in the Universe” about the extremes of time and space, and the rest of MagellanTV’s science collection: https://www.magellantv.com/watch/the-most-powerful-black-hol…niverse-4k.

REFERENCES
The Tempest by Peter Cawdron: https://tinyurl.com/2ep4uzvs.
Inside Black Holes: https://youtu.be/iUr8Obv_DeA
How Black Holes form: https://youtu.be/7xCgnMqIgPI
How Stable orbits form around Black Holes: https://tinyurl.com/2klz9mfd.

CHAPTERS
0:00 Karl Schwarzschild theorizes black holes.
1:58 Inspiration for this video.
3:16 How black holes form.
5:28 What is the Event Horizon?
7:25 How Time flows near & inside a black hole.
9:57 How can Black Holes be so bright if no light escapes?
11:34 How do we detect black holes if we can’t see them?
12:29 Can life form on a planet orbiting a black hole?
14:59 How long do black holes last?

SUMMARY
Karl Schwarzschild crafted the first exact solution to Einstein’s equations of general relativity. He found that as gravity increased around an object, there must be a point where even light could not escape. He theorized black holes.

Stars are in a balance between gravity trying to collapse it inward, and energy of fusion in its core which pushes outward. But when large stars run out of fuel, gravity causes it to collapse. If the star is massive enough, this results in a supernova. A black hole remains in the center of the debris, if the collapsed core has a mass of 2 to 3 times the mass of our sun.

In a Black Hole, General relativity says all its mass is collapsed into an infinitesimally small volume, called a singularity. A singularity has all its mass in zero volume of space, thus it has infinite density. But infinities usually mean errors in math, so singularities may not be real.

The supernova is so old that it is believed to have been described in a passage of Shakespeare’s “Hamlet.”

A group of scientists has shed new light on a star that exploded in a supernova more than 450 years ago, blasting particles out into space at close to the speed of light.

Now, astronomers have used NASA’s Imaging X-ray Polarimetry to study the incredibly long-lasting aftereffects of the supernova called Tycho.


NASA/ASI/MSFC/INAF/R. Ferrazzoli, et al.

The Tycho supernova blast released as much energy as the Sun would emit over ten billion years, NASA pointed out in a statement. The blast was visible to many humans on Earth way back in 1572.

For the last 50 years, astronomers have speculated that some supermassive black holes might “run away” from their home galaxies given the right conditions. Now, astronomers believe they have discovered a strong candidate for a supermassive black hole that has done just that, according to new research published on the preprint server arXiv.org, which has been accepted for publication in The Astrophysical Journal.

One of the great questions for humanity is whether we are alone in the universe. Indeed, astrobiologists appear tantalizingly close to being able to spot the signs of life on other Earths — should it exist elsewhere — using modern observatories such as the James Webb Space Telescope.

Now a group of astronomers have taken this question further by asking whether life could exist in other universes. In other words, they want to know whether we are alone in the multiverse. And they have developed a way to explore this question by considering the range of conditions that might exist in other universes.

The question comes about because the fundamental constants that govern physical laws have values that seem perfectly arranged to allow life to emerge.

The properties of quark-gluon plasma (QGP), the primordial form of matter in the early universe, is conventionally described using relativistic hydrodynamical models. However, these models predict low particle yields in the low transverse momentum region, which is at odds with experimental data. To address this discrepancy, researchers from Japan now propose a novel framework based on a “core-corona” picture of QGP, which predicts that the corona component may contribute to the observed high particle yields.

Research in fundamental science has revealed the existence of quark-gluon plasma (QGP) – a newly identified state of matter – as the constituent of the early universe. Known to have existed a microsecond after the Big Bang, the QGP, essentially a soup of quarks and gluons, cooled down with time to form hadrons like protons and neutrons – the building blocks of all matter. One way to reproduce the extreme conditions prevailing when QGP existed is through relativistic heavy-ion collisions. In this regard, particle accelerator facilities like the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) have furthered our understanding of QGP with experimental data pertaining to such collisions.

Meanwhile, theoretical physicists have employed multistage relativistic hydrodynamic models to explain the data, since the QGP behaves very much like a perfect fluid. However, there has been a serious lingering disagreement between these models and data in the region of low transverse momentum, where both the conventional and hybrid models have failed to explain the particle yields observed in the experiments.

ESA’s Euclid project manager said it is a “cosmic embarrassment” that we do not know more about these mysterious forces.

The European Space Agency (ESA) will launch its Euclid space observatory in the coming months to investigate the mysterious cosmic phenomena known as dark matter and dark energy.

ESA plans to shed new light on dark energy and dark matter.


ESA / C. Carreau.

It will be the first space mission in history to exclusively search for the mysterious forces, which make up 95 percent of the universe.

Black holes are so powerful that we’ve had to come up with new words to describe their awesome annihilation abilities. Objects that come in contact with the extreme gravitational pull of one of these voids are at risk of being simultaneously stretched and ripped apart, leaving elongated strands of matter that look something like spaghetti or a similar pasta.

Hence we say that black holes often “spaghettify” their meals before consuming them.

Astronomers from UCLA and the Keck Observatory in Hawaii have been watching an odd cloud getting pulled apart for the past few decades as it accelerates towards Sagittarius A (Sgr A), the supermassive black hole at the center of our Milky Way galaxy.