Toggle light / dark theme

The object’s gravity and velocity, the study suggested, would have ignited the gas and left a blazing trail of stars in its wake. This exciting discovery would mark the first observation of a rogue supermassive black hole — objects that are theorized to roam the universe after being ejected from their host galaxy, possibly due to collisions with other black holes.

Now, new research hints at a more mundane explanation.

The new study, published in the journal Astronomy & Astrophysics (opens in new tab), suggests that the weirdly thin streak might simply be a flat galaxy viewed on its edge, like the rim of a plate. Unlike the Milky Way, this supposed galaxy would not have a bulge of stars at its center but would be totally flat — a relatively common type of galaxy called a thin or flat galaxy.

Lurking in the darkness of space, black holes are notorious for shredding stars that venture too close, and then gobbling them up. But astronomers have had only a rudimentary understanding of that dramatic process.

A new study sheds some light. Astronomers have spotted streams of star matter that came full circle around black holes and bumped into themselves. Such collisions were long theorized, but the new observations for the first time provide a direct look at the early stages of disk-forming around black holes.

THE COMPLETE TEGMARK MULTIVERSE — EXPLAINED! Join us… and find out more!

Subscribe: https://wmojo.com/unveiled-subscribe.

In this video, Unveiled takes a closer look at the Tegmark Multiverse! Created by the renowned physicist, Max Tegmark, there are four levels to fully explain reality… and it is a truly spectacular journey as we travel through all of them!

This is Unveiled, giving you incredible answers to extraordinary questions!

Researchers have discovered a new generic production mechanism of gravitational waves generated by a phenomenon known as oscillons, which can originate in many cosmological theories from the fragmentation into solitonic “lumps” of the inflaton field that drove the early universe’s rapid expansion, reports a new study published in Physical Review Letters on May 2.

The results have set the stage for revealing exciting novel insights about the ’s earliest moments.

The inflationary period, which occurred just after the Big Bang, is believed to have caused the universe to expand exponentially. In many cosmological theories, the rapid expansion period is followed by the formation of oscillons.

I either think this has to do with some unknown physics problem like lack of some sorta gravity on spacetime fabric or it could be piloted by lifeforms as a black hole spaceship. Either way this could be addressed with a laser that could evaporate it back into light for instance a matter into light laser or put it back in place with a stasis field.


Supermassive black holes (SMBHs) lurk in the center of large galaxies like ours. From their commanding position in the galaxy’s heart, they feed on gas, dust, stars, and anything else that strays too close, growing more massive as time passes. But in rare circumstances, an SMBH can be forced out of its position and hurtle through space as a rogue SMBH.

In a new paper, researchers from Canada, Australia, and the U.S. present evidence of a rogue SMBH that’s tearing through space and interacting with the circumgalactic medium (CGM.) Along the way, the giant is creating and triggering .

The paper is “A candidate runaway supermassive black hole identified by shocks and star formation in its wake.” The lead author is Pieter van Dokkum, Professor of Astronomy and Physics at Yale University. The paper is avaiable on the arXiv preprint server and hasn’t been peer-reviewed yet.