Toggle light / dark theme

A synthetic analog of a black hole could tell us a thing or two about an elusive radiation theoretically emitted by the real thing.

Using a chain of atoms in single-file to simulate the event horizon of a black hole, a team of physicists observed the equivalent of what we call Hawking radiation – particles born from disturbances in the quantum fluctuations caused by the black hole’s break in spacetime.

This, they say, could help resolve the tension between two currently irreconcilable frameworks for describing the Universe: the general theory of relativity, which describes the behavior of gravity as a continuous field known as spacetime; and quantum mechanics, which describes the behavior of discrete particles using the mathematics of probability.

Black holes are found throughout our universe. However, astronomers have discovered two new black holes close to Earth that have raised some eyebrows. While discovering black holes near Earth isn’t unusual, these two holes are much further from their stars than expected.

This has presented some questions for astronomers because it differs from how these binary systems are usually set up. Normally, when a black hole and a star share a system, they are known as binary systems, and the black hole usually eats away at the star.

That eating of the star is what makes the black holes much easier to spot, as they give off high-energy readings. However, black holes like these found close to Earth that are further from their star are “dark,” not creating high bursts of energy because they aren’t eating away at their star.

The ‘Hawking radiation’ emitted by black holes may be able to carry crucial information, a new study suggests. Scientists may have just found the solution to one of astrophysics most mind-boggling mysteries concerning black holes, also known as the ‘Hawking information paradox’. A study published in the journal Physics Letters B last month offers a resolution to a problem the late physicist Stephen Hawking was working on in his final years.

The universe is expanding, but how fast exactly? The answer appears to depend on whether you estimate the cosmic expansion rate—referred to as the Hubble’s constant, or H0—based on the echo of the Big Bang (the cosmic microwave background, or CMB) or you measure H0 directly based on today’s stars and galaxies. This problem, known as the Hubble tension, has puzzled astrophysicists and cosmologists around the world.

A study carried out by the Stellar Standard Candles and Distances research group, led by Richard Anderson at EPFL’s Institute of Physics, adds a new piece to the puzzle. Their research, published in Astronomy & Astrophysics, has achieved the most accurate calibration of Cepheid stars—a type of variable star whose luminosity fluctuates over a defined period—for distance measurements to date based on data collected by the European Space Agency’s (ESA’s) Gaia mission. This new calibration further amplifies the Hubble tension.

The Hubble constant (H0) is named after the astrophysicist who—together with Georges Lemaître—discovered the phenomenon in the late 1920s. It’s measured in kilometers per second per megaparsec (km/s/Mpc), where 1 Mpc is around 3.26 million light years.

An artificial black hole produced using sound waves and a dielectric medium has been created in the lab, according to researchers with an international think tank featuring more than 30 Ph.D. research scientists from around the world.

The researchers say their discovery is significantly more cost-effective and efficient than current methods in use by researchers who want to simulate the effects of a black hole in a laboratory environment.

New York-based Applied Physics first achieved recognition with the 2021 publication of a peer-reviewed theoretical paper detailing the mathematics behind the construction of a physical warp drive. More recently, the organization published a method for using Cal Tech’s Laser Interferometer Gravitational-Wave Observatory (LIGO) to detect the use of warp drives in outer space, co-authored by Dr. Manfred Paulini, the Associate Dean of Physics at Carnegie Mellon University.

2.7 billion light years away, in a galaxy cluster known as Abell 1,201, an ultramassive black hole lurks, measuring upwards of 32.7 billion times the mass of our Sun. This new measurement exceeds astronomers’ previous estimates by at least 7 billion solar masses. It’s one of the biggest black holes astronomers have ever detected and cuts close to how large we believe they can be.

Our universe is filled with black holes, including the supermassive black holes found in the center of galaxies throughout all the regions of space around us. Many of these are inactive, not excreting material that causes them to light up, making them easier to detect. Others are rogue black holes, roaming through space however they please. Others still are ultramassive black holes.

These black holes are much bigger than supermassive black holes like those found at the center of galaxies. And, because they’re so massive – and contain so much mass – they should theoretically be easier to find. However, as I noted above, it all depends on how active the black hole is and how much heat it emits. That’s because, by default, ultramassive black holes (and black holes overall) don’t emit light.

Scientists at Oak Ridge National Laboratory attempted to observe dark matter in a brightly-lit hallway in the basement using the sensitivity of their neutrino detectors. Neutrino Alley, where the team works, is located beneath the Spallation Neutron Source, a powerful particle accelerator. Following up on years of theoretical calculation, the COHERENT team set out to observe dark matter, which is believed to make up to 85% of the mass of the Universe. The experiment allowed the team to extend the worldwide search for dark matter in a new way, and they are planning to receive a much larger and more sensitive detector to improve their chances of catching dark matter particles.

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.

A collaborative team of scientists called COHERENT, including Kate Scholberg, Arts & Sciences Distinguished Professor of Physics, Phillip Barbeau, associate professor of Physics, and postdoctoral scholar Daniel Pershey, attempted to bring dark matter out of the shadows of the Universe and into a slightly less glamorous destination: a brightly lit, narrow hallway in a basement.

In 2018, a team of scientists at the University of California, Santa Barbara proposed a method for creating Kerr-Newman black holes using lasers. However, this method has not yet been tested experimentally.

The team of scientists, led by Philip Gibbs, proposed to create Kerr-Newman black holes by colliding two high-energy laser beams. The collision would create a plasma that would be compressed and heated to extreme temperatures, creating a black hole.


Abstract

Note, that micro black holes last within micro seconds, and that we wish to ascertain how to build, in a laboratory, a black hole, which may exist say at least up to 10^−1 seconds and provide a test bed as to early universe gravitational theories. First of all, it would be to determine, if the mini black hole bomb, would spontaneously occur, unless the Kerr-Newmann black hole were carefully engineered in the laboratory. Specifically, we state that this paper is modeling the creation of an actual Kerr Newman black hole via laser physics, or possibly by other means. We initiate a model of an induced Kerr-Newman black Holes, with specific angular momentum J, and then from there model was to what would happen as to an effective charge, Q, creating an E and B field, commensurate with the release of GWs. The idea is that using a frame of reference trick, plus E + i B = −function of the derivative of a complex valued scalar field, as given by Appell, in 1887, and reviewed by Whittaker and Watson, 1927 of their “A Course of Modern Analysis” tome that a first principle identification of a B field, commensurate with increase of thermal temperature, T, so as to have artificially induced GW production. This is compared in part with the Park 1955 paper of a spinning rod, producing GW, with the proviso that both the spinning rod paper, and this artificial Kerr-Newman Black hole will employ the idea of lasers in implementation of their respective GW radiation. The idea is in part partly similar to an idea the author discussed with Dr. Robert Baker, in 2016 with the difference that a B field would be generated and linked to effects linked with induced spin to the Kerr-Newman Black hole. We close with some observations about the “black holes have no hair” theorem, and our problem. Citing some recent suppositions that this “theorem” may not be completely true and how that may relate to our experimental situation. We close with observations from Haijicek, 2008 as which may be pertinent to Quantization of Gravity. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. The main issue which is now to avoid the black hole bomb effect which would entail an explosion of a small black hole in a laboratory. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. In all, the main end result is to try to avoid the so called black hole bomb effect, where a mini black hole would explode in a laboratory setting within say 10^−16 or so seconds, i.e. the idea would be to have a reasonably stable configuration within put laser energy, but a small mass, and to do it over hopefully 1015 or more times longer than the 10^−16 seconds where the mini black hole would quickly evaporate. I.e. a duration of say up to 10^−1 seconds which would provide a base line as to astrophysical modeling of a Kerr-Newman black hole.