Menu

Blog

Archive for the ‘cosmology’ category: Page 137

Apr 23, 2023

Researchers Argue Black Holes Will Destroy All Quantum States

Posted by in categories: cosmology, quantum physics

New calculations suggest that the event horizons will eventually “decohere” quantum possibilities—even those that are far away.

Apr 23, 2023

Cosmologists Parry Attacks on the Vaunted Cosmological Principle

Posted by in category: cosmology

A central pillar of cosmology — the universe is the same everywhere and in all directions — is surviving a storm of possible evidence against it.

Apr 23, 2023

Quantum entanglement could make accelerometers and dark matter sensors more accurate

Posted by in categories: cosmology, mobile phones, quantum physics

The “spooky action at a distance” that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.

Quantum entanglement significantly improves the precision of sensors that can be used to navigate without GPS, according to a new study in Nature Photonics.

“By exploiting entanglement, we improve both measurement sensitivity and how quickly we can make the measurement,” said Zheshen Zhang, associate professor of electrical and computer engineering at the University of Michigan and co-corresponding author of the study. The experiments were done at the University of Arizona, where Zhang was working at the time.

Apr 22, 2023

New dark matter map created with ‘cosmic fossil’ shows Einstein was right (again)

Posted by in categories: cosmology, mapping, physics

The mapping of matter in the cosmos helps to confirm Einstein’s theory of general relativity and reveals more about mysterious dark matter.

Apr 21, 2023

Artificial intelligence has improved the first-ever real photo of a supermassive black hole 6.5 billion times heavier than the Sun

Posted by in categories: cosmology, information science, robotics/AI

In 2017, the European Southern Observatory (ESO) obtained the first ever real photo of a black hole. Six years later, artificial intelligence was able to improve the image.

Here’s What We Know

American scientists have decided to improve the photo of a black hole. The original image shows something resembling a “fuzzy donut”. Experts have applied the PRIMO algorithm, based on machine learning, to improve the image.

Apr 21, 2023

Probing fundamental symmetries of nature with the Higgs boson

Posted by in categories: cosmology, particle physics

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter could be explained by the violation of charge-parity (CP) symmetry, which essentially means that certain processes that involve particles behave differently to those that involve their antiparticles.

However, the CP-violating processes that have been observed so far are insufficient to explain the matter–antimatter asymmetry in the universe. New sources of CP violation must be out there—and might be hiding in interactions involving the Higgs boson. In the Standard Model of particle physics, Higgs-boson interactions with other particles conserve CP symmetry. If researchers find signs of CP violation in these interactions, they could be a clue to one of the universe’s oldest mysteries.

In a new analysis of its full dataset from Run 2 of the LHC, the ATLAS collaboration tested the Higgs-boson interactions with the carriers of the weak force, the W and Z bosons, looking for signs of CP violation. The collaboration studied Higgs-boson decays into two Z bosons, each of which transforms into a pair of leptons (an electron and a positron or a muon and an antimuon), thus resulting in four charged leptons. The researchers also studied interactions in which two W or Z bosons combine to produce a Higgs boson. In this case, one quark and one antiquark are produced together with the Higgs boson, creating ‘jets’ of particles in the ATLAS detector.

Apr 21, 2023

Dark Order in the Universe: Distant Galaxies Align To Support Einstein’s General Relativity

Posted by in category: cosmology

Scientists have confirmed that intrinsic alignments of galaxies can probe dark matter and dark energy on a cosmological scale, supporting general relativity at vast spatial scales. However, the nature of dark energy and cosmic acceleration remains unresolved.

Einstein would nod in approval. General relativity may apply even in the farthest reaches of the universe.

Now, scientists from international research institutions, including Kyoto University, have confirmed that the intrinsic alignments of galaxies have characteristics that allow it to be a powerful probe of dark matter and dark energy on a cosmological scale.

Apr 21, 2023

A scientific triumph: Danish student uncovers the secret of black holes

Posted by in category: cosmology

Black holes have always been fascinating to scientists and the general public alike. They are so mysterious that even light can’t escape.

Apr 21, 2023

This Is Extraordinary: Gravity Can Create Light, All on Its Own

Posted by in categories: cosmology, physics

Right after the Big Bang, gravitational waves may have built on each other to create huge standing waves of gravitational energy.

Apr 21, 2023

The DarkSide experiment extends its search to dark matter–nucleon interactions

Posted by in categories: cosmology, particle physics

The DarkSide experiment is an ambitious research effort aimed at detecting dark matter particle interactions in liquid argon using a dual-phase physics detector located at the underground Gran Sasso National Laboratory. These interactions could be observed by minimizing background signals, and this could be possible thanks to the remarkable discrimination power of the scintillation pulse of liquefied argon in the DarkSide-50 detector, which can separate nuclear recoil events associated with these interactions from more than 100 million electronic recoil events linked to radioactive background.

The large team of researchers involved in the DarkSide experiment has recently been using the detector to search for lighter particles. The results of a new search for dark matter–nucleon interactions, published in Physical Review Letters, allowed them to set new constraints for sub-GeV/c2 dark matter.

“The DarkSide-50 experiment was designed as a test for the use of from underground sources, naturally depleted in the radioactive 39 Ar, for very large scale dark matter searches,” Cristiano Galbiati a Researcher at Princeton University and the Gran Sasso Science Institute, told Phys.org. “It is remarkable to see how a group of young researchers within the collaboration was able to exploit the apparatus to extract the best limit for dark matter searches that were not part of the original scope of the experiment. If anything, the ingenuity and resolve of this group should be credited for this important result.”