Toggle light / dark theme

Astrophysicists uncover supermassive black hole/dark matter connection in solving the ‘final parsec problem’

Dark matter could bring black holes together.

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge.

A gravitational-wave “hum” pervades the Universe.


Researchers have found a link between some of the largest and smallest objects in the cosmos: supermassive black holes and dark matter particles.

Are Black Holes Cosmic Vaults or Information Gateways?

They say that we ultimately lose information once it enters a black hole, but is this really the case? Let’s find out on today’s video. Have you ever wondered what happens to information when it falls into a black hole? Does it get destroyed forever? Does it arrive somewhere else? Does it enter a girl’s bookcase and call it for Murf? Is there a way for it to escape? Today, we’re diving into one of the biggest mysteries in physics: the black hole information paradox. But first, why should we care? Well, in case a black hole suddenly pops up in your bedroom or office table, this paradox sits at the intersection of quantum mechanics and general relativity, the two pillars of modern physics, and solving it could unlock new understandings of the universe itself. So, let’s get started. Our journey begins with looking at the basics of black holes and the paradox that has puzzled scientists for decades.

Like any good explainer, let’s begin with the basics. What exactly is a black hole? In simple terms, a black hole is a region in space where gravity is so strong that nothing, not even light, can escape from it. No Brad, it’s not a challenge; calm down. This happens when a massive star collapses under its own gravity, compressing all its mass into an incredibly small, incredibly dense point known as a singularity. Surrounding the singularity is the event horizon, the boundary beyond which nothing can return. Think of the event horizon as the ultimate point of no return. Once you cross it, you’re inevitably pulled towards the singularity, and there’s no way back. Feel like you know well about black holes? Great. Now let’s talk about Hawking radiation. In the 1970s, Stephen Hawking proposed that black holes aren’t completely black; instead, they emit a type of radiation due to quantum effects near the event horizon. This radiation, aptly named Hawking radiation, suggests that black holes can slowly lose mass and energy over time, eventually evaporating completely. But here’s where things get tricky: Hawking radiation is thermal. By that, we don’t mean that it’s smoking or anything, but that it appears to carry no information about any of the stuff that fell into the black hole. And this brings us to the heart of our mystery: the black hole information paradox. How can the information about the material that formed the black hole and fell into it be preserved if it’s seemingly lost in the radiation? With this foundation in place, I feel that we’re now ready to explore the paradox itself and the various theories proposed to resolve it.

DISCUSSIONS \& SOCIAL MEDIA

Commercial Purposes: [email protected].
Tik Tok: / insanecuriosity.
Reddit: / insanecuriosity.
Instagram: / insanecuriositythereal.
Twitter: / insanecurio.
Facebook: / insanecuriosity.
Linkedin: / insane-curiosity-46b928277
Our Website: https://insanecuriosity.com/

Credits: Ron Miller, Mark A. Garlick / MarkGarlick.com, Elon Musk/SpaceX/ Flickr.

00:00 Introduction.
01:07 What is a Black Hole?
01:54 Hawking Radiation.
02:46 The Black Hole Information Paradox Explained.
04:05 Entanglement Islands.
05:21 Complementarity and Quantum Hair.
06:04 Holographic Principle.
06:48 Recent Calculations and Theories.
07:56 Visualizing Complex Concepts.
09:32 Current State of Research.
11:16 Implications for Physics.
12:06 Recap and Conclusion.

#insanecuriosity #blackhole #astronomy

A Hidden Treasure in the Milky Way — Astronomers uncover Ultrabright X-ray Source

Astronomers uncovered that a well-known X-ray binary, whose exact nature has been a mystery to scientists until now, is actually a hidden ultraluminous X-ray source. X-ray binaries are intriguing systems consisting of two celestial bodies: a normal star and a compact, dead object such as a black hole or a neutron star that sucks material from its stellar companion. A few hundred such sources have been identified thus far in our Galaxy. When it comes to the most powerful phenomena in the Universe, the release of gravitational energy in X-ray binary systems stands out as a highly efficient process.

Among the first X-ray binary systems discovered in the cosmos is the system Cygnus X-3. Since the early 1970s, this binary system was noted for its ability to briefly emerge as one of the most intense radio sources, yet in a few days it dims or vanishes altogether.

This peculiar characteristic spurred early efforts, coordinated by telephone calls, to unite astronomical observations across the globe.

Black Holes: Not Destroyers but Protectors

A study has revealed that galaxies possess a regulatory mechanism similar to a heart and lungs, which controls their growth by limiting gas absorption.

This mechanism, involving a supermassive black hole and its jet emissions, prevents galaxies from expanding too rapidly, ensuring their longevity and preventing premature aging into “zombie” galaxies.

Galaxies avoid an early death because they have a “heart and lungs” which effectively regulate their “breathing” and prevent them from growing out of control, a new study suggests.

Breaking Barriers in Nuclear Fusion: How Neutron Migration Could Change Everything

Low-energy nuclear fusion reactions are influenced by the migration of neutrons and protons between fusing nuclei and their isospin compositions. Research conducted using high-performance computational models has shown the importance of isospin dynamics and nuclear shapes, particularly in asymmetric, neutron-rich systems, revealing significant implications for nuclear physics and potential energy applications.

Low-Energy Nuclear Fusion

Low-energy nuclear fusion reactions can potentially provide clean energy. In stars, low-energy fusion reactions during the stages of carbon and oxygen burning are critical to stellar evolution. These reactions also offer valuable insights into the exotic processes occurring in the inner crust of neutron stars as they accumulate matter. However, scientists do not fully understand the underlying dynamics governing these reactions.

/* */