Toggle light / dark theme

A RIKEN physicist and two colleagues have found that a wormhole—a bridge connecting distant regions of the Universe—helps to shed light on the mystery of what happens to information about matter consumed by black holes.

Einstein’s theory of predicts that nothing that falls into a black hole can escape its clutches. But in the 1970s, Stephen Hawking calculated that black holes should emit radiation when , the theory governing the microscopic realm, is considered. “This is called black hole evaporation because the black hole shrinks, just like an evaporating water droplet,” explains Kanato Goto of the RIKEN Interdisciplinary Theoretical and Mathematical Sciences.

This, however, led to a paradox. Eventually, the black hole will evaporate entirely—and so too will any information about its swallowed contents. But this contradicts a fundamental dictum of quantum physics: that information cannot vanish from the Universe. “This suggests that general relativity and quantum mechanics as they currently stand are inconsistent with each other,” says Goto. “We have to find a unified framework for quantum gravity.”

Black holes really are giant fuzzballs, a new study says.

The study attempts to put to rest the debate over Stephen Hawking’s famous information paradox, the problem created by Hawking’s conclusion that any data that enters a black hole can never leave. This conclusion accorded with the laws of thermodynamics, but opposed the fundamental laws of quantum mechanics.

“What we found from is that all the mass of a black hole is not getting sucked in to the center,” said Samir Mathur, lead author of the study and professor of physics at The Ohio State University. “The black hole tries to squeeze things to a point, but then the particles get stretched into these strings, and the strings start to stretch and expand and it becomes this fuzzball that expands to fill up the entirety of the black hole.”

Black holes aren’t surrounded by a burning ring of fire after all, suggests new research.

Some physicists have believed in a “firewall” around the perimeter of a black hole that would incinerate anything sucked into its powerful gravitational pull.

But a team from The Ohio State University has calculated an explanation of what would happen if an electron fell into a typical black hole, with a mass as big as the sun.

Thought to make up 85% of matter in the universe, dark matter is nonluminous and its nature is not well understood. While normal matter absorbs, reflects, and emits light, dark matter cannot be seen directly, making it harder to detect. A theory called “self-interacting dark matter,” or SIDM, proposes that dark matter particles self-interact through a dark force, strongly colliding with one another close to the center of a galaxy.

In work published in The Astrophysical Journal Letters, a research team led by Hai-Bo Yu, a professor of physics and astronomy at the University of California, Riverside, reports that SIDM simultaneously can explain two astrophysics puzzles in opposite extremes.

“The first is a high-density halo in a massive elliptical galaxy,” Yu said. “The halo was detected through observations of strong , and its density is so high that it is extremely unlikely in the prevailing cold dark matter theory. The second is that dark matter halos of ultra-diffuse galaxies have extremely low densities and they are difficult to explain by the cold dark matter theory.”

Scientists have discovered gravitational waves stemming from a black hole merger event that suggest the resultant black hole settled into a stable, spherical shape. These waves also reveal the combo black hole may be much larger than previously thought.

When initially detected on May 21, 2019, the gravitational wave event known as GW190521 was believed to have come from a merger between two black holes, one with a mass equivalent to just over 85 suns and the other with a mass equivalent to about 66 suns. Scientists believed the merger therefore created an approximately 142 solar mass daughter black hole.

Yet, newly studied spacetime vibrations from the merger-created black hole, rippling outward as the void resolved into a proper spherical shape, seem to suggest it’s more massive than initially predicted. Rather than possess 142 solar masses, calculations say it should have a mass equal to around 250 times that of the sun.

The latest evidence comes from a yet-to-be-peer-reviewed analysis of gamma-ray emission. The data is publicly available and it was used by researchers at the National Autonomous University of Mexico to create a timeline of emission from June 2022 to December 2022. The data is from NASA’s Fermi Gamma-ray Space Telescope. The team found a repeating emission, appearing every 76.32 minutes.

The light curve shows the repeating pattern clearly, and the period is consistent with observations from last year in a completely different wavelength. Radio observations also suggested that something is going around Sagittarius A* about every 74 minutes, with an uncertainty of 6 minutes higher or lower.

Sagittarius A*’s radius is 12 million kilometers (7.4 miles) and this object is expected to be fairly close to it, five times the black hole radius. To cover the orbital distance in just over an hour, the blob needs to travel at 30 percent of the speed of light, truly an impressive velocity.

Supermassive black holes reside in some of the biggest galaxies in the universe. They tend to be billions of times more massive that our Sun, and not even light itself can escape a black hole once it gets too close.

But it’s not all darkness. Supermassive black holes power some of the most luminous celestial objects in the universe – active galactic nuclei, which shine across the spectrum of light, including radio waves.

The active galactic nucleus in nearby galaxy Messier 87 is a prodigious emitter of radio waves, 27 orders of magnitude more powerful than the most powerful radio transmitters on Earth.

Dr. McKinney noted, “With JWST, we can study for the first time the optical and infrared properties of this heavily dust-obscured, hidden population of galaxies because it’s so sensitive that not only can it stare back into the farthest reaches of the universe, but it can also pierce the thickest of dusty veils.”


Did galaxies produce stars in the early universe? This is what a recent study published in The Astrophysical Journal hopes to unveil as a team of international researchers analyze data from NASA’s James Webb Space Telescope (JWST) about a star-forming galaxy called AzTECC71 that existed approximately 900 million years after the Big Bang. What makes this discovery unique is that AzTECC71 is hidden behind a fair amount of dust which initially fooled astronomers to hypothesize that it’s not very big. How astronomers now hypothesize that AzTECC71 was producing a plethora of new stars despite its young age, which challenges previous notions of the formation and evolution of galaxies so soon after the Big Bang.

Color composite image of the galaxy, AzTECC71, which astronomers estimate existed approximately 900 million years after the Big Bang. This image was made using multiple color filters as part of the James Webb Space Telescope’s NIRCam instrument. (Credit: J. McKinney/M. Franco/C. Casey/University of Texas at Austin)

“This thing is a real monster,” said Dr. Jed McKinney, who is a postdoctoral researcher at The University of Texas at Austin and lead author of the study. “Even though it looks like a little blob, it’s actually forming hundreds of new stars every year. And the fact that even something that extreme is barely visible in the most sensitive imaging from our newest telescope is so exciting to me. It’s potentially telling us there’s a whole population of galaxies that have been hiding from us.”