Toggle light / dark theme

Studying Our Ocean’s History To Understanding Its Future — Dr. Emily Osborne, PhD, Ocean Chemistry & Ecosystems Division, National Oceanic and Atmospheric Administration (NOAA)


Dr Emily Osborne, Ph.D. (https://www.aoml.noaa.gov/people/emily-osborne/) is a Research Scientist, in the Ocean Chemistry and Ecosystems Division, at the Atlantic Oceanographic and Meteorological Laboratory.

The Atlantic Oceanographic and Meteorological Laboratory (AOML), a federal research laboratory, is part of the National Oceanic and Atmospheric Administration’s (NOAA) Office of Oceanic and Atmospheric Research (OAR), located in Miami in the United States. AOML’s research spans tropical cyclone and hurricanes, coastal ecosystems, oceans and human health, climate studies, global carbon systems, and ocean observations. It is one of ten NOAA Research Laboratories.

This process of harvesting energy from rain is new.

Researchers in Italy have engineered an artificial leaf that can be embedded within plants to create electricity from raindrops or wind. It functions extremely well under rainy or windy conditions to light up LED lights and power itself, according to a report by IEEE Spectrum.

Fabian Meder, a researcher studying bioinspired soft robotics at the Italian Institute of Technology (IIT) in Genoa, Italy, told the science news outlet that the system could be practical for agricultural applications and remote environmental monitoring in order to observe plant health or monitor climate conditions.


Coldsnowstorm/iStock.

Social insects like bees demonstrate a remarkable range of behaviors, from working together to build structurally complex nests (complete with built-in climate control) to the pragmatic division of labor within their communities. Biologists have traditionally viewed these behaviors as pre-programmed responses that evolved over generations in response to external factors. But two papers last week reported results indicating that social learning might also play a role.

The first, published in the journal PLoS Biology, demonstrated that bumblebees could learn to solve simple puzzles by watching more experienced peers. The second, published in the journal Science, reported evidence for similar social learning in how honeybees learn to perform their trademark “waggle dance” to tell other bees in their colony where to find food or other resources. Taken together, both studies add to a growing body of evidence of a kind of “culture” among social insects like bees.

“Culture can be broadly defined as behaviors that are acquired through social learning and are maintained in a population over time, and essentially serves as a ‘second form of inheritance,’ but most studies have been conducted on species with relatively large brains: primates, cetaceans, and passerine birds,” said co-author Alice Bridges, a graduate student at Queen Mary University of London who works in the lab of co-author Lars Chittka. “I wanted to study bumblebees in particular because they are perfect models for social learning experiments. They have previously been shown to be able to learn really complex, novel, non-natural behaviors such as string-pulling both individually and socially.”

Go to https://brilliant.org/IsaacArthur/ to get a 30-day free trial + the first 200 people will get 20% off their annual subscription.
If the end of the world is nigh, it may be too late to avert a catastrophe. So what can we do to mitigate the damage or recover after a cataclysm comes?

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

▬ Cataclysm Index ▬▬▬▬▬▬▬▬▬▬
0:00 — Intro.
03:43 — Nuclear War.
11:24 — Asteroid.
15:34 — Supernova.
18:34 — Gamma Ray Burst.
21:51 — Massive Climate Shift.
23:15 — Snowball Earth.
24:34 — Super Volcano.
28:51 — BioWar.
30:46 — Zombie Apocalypse.
32:25 — Robots / AI
35:10 — Alien Invasions.

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/journey-to-alpha-centauri.

Companies could one day make superconductive quantum computer chips that function at room temperature thanks to a new material from researchers in the US. Ranga Dias from the University of Rochester and colleagues made a material superconductive at 21°C and pressures less than 1% of those used for existing high-temperature superconductors. ‘The most exciting part is the pressure,’ Dias tells Chemistry World. ‘Even I didn’t think this was possible.’

Together with Ashkan Salamat’s team at the University of Nevada, Las Vegas, the scientists say that electrical resistance in their nitrogen-doped lutetium hydride falls to zero at room temperature. Making room-temperature zero-resistance materials is a chemistry ‘holy grail’ and could fight climate change by reducing the 5% of electricity lost as heat while flowing through the grid.

However, Dias and Salamat’s team hasn’t been able to fully confirm the new material’s structure. As hydrogen atoms are so small they don’t easily diffract the x-rays used to work out the material’s composition. And this is an important reservation, considering the publisher of the team’s previous high-temperature superconductor paper retracted it.

Climate, tectonics and time combine to create powerful forces that craft the face of our planet. Add the gradual sculpting of the Earth’s surface by rivers and what to us seems solid as rock is constantly changing.

However, our understanding of this dynamic process has at best been patchy.

Scientists today have published new research revealing a detailed and dynamic model of the Earth’s surface over the past 100 million years.

The new supercomputer system can predict the occurrence of linear rainbands, which are clouds that trigger heavy rain, leading to natural disasters.

Trust Japan to get a supercomputer to predict heavy rain and other natural disasters like landslides and flooding.

Japan has always had to deal with natural disasters as the island is located along an area where several tectonic plates meet. The country is highly vulnerable to natural disasters such as earthquakes, tsunamis, and natural disasters. These have only been exacerbated due to climate change.

The results of new experiments indicate that surface-adsorbed water molecules are responsible for contact electrification in granular matter, a finding that challenges established models of this phenomenon.

When two surfaces come into contact, they can exchange electrical charge. This fundamental phenomenon is linked to some of humankind’s earliest scientific experiments—reports suggest that the ancient Greeks uncovered static electricity after rubbing various materials together. Numerous physical processes are at play when two objects touch. But the mechanism underpinning charge exchange—which is known as contact electrification—has bedeviled scientists for centuries [1]. New experiments by Galien Grosjean and Scott Waitukaitis of the Institute of Science and Technology Austria now bring welcome clarity in this field [2]. By levitating a single particle and measuring its charge after consecutive collisions with a surface, the researchers were able to uncover a connection between contact electrification and water molecules on the particle and the surface.

When large numbers of insulating particles, such as grains of sand or particles of flour, collide or rub past each other, enormous electric potentials can build up. Such potentials can have dramatic consequences, leading to spectacular discharges, such as the lightning flashes seen during a sandstorm or a volcanic-ash eruption. Closer to home, such discharges can ignite flammable dusts or disrupt powder flows [3, 4]. But a mystery surrounds this contact electrification: How can identical particles exchange charge? In other words, Why does one of the particles become a donor of charge and the other an acceptor?

Our new series The Future with Hannah Fry explores the science, tech and people on the cusp of the most transformative breakthroughs of our age – from AI to clean energy. Watch the first episode on Bloomberg Originals on Feb. 22.


Do you want to know what your future holds? A life beyond 150 years old? A world where computers can read our emotions? A planet transformed by unlimited clean energy? Mathematician Hannah Fry will explore these questions and more in the new series The Future With Hannah Fry, debuting on Bloomberg Originals on Feb. 22.

Watch The Future With Hannah Fry on Wednesdays at 8:30 p.m. ET on Bloomberg.com, the Bloomberg app on your connected TV, Apple TV, Roku, Samsung TV.

——-