Toggle light / dark theme

Volcanic eruptions deep in our oceans are capable of extremely powerful releases of energy, at a rate high enough to power the whole of the United States, according to research published today.

Eruptions from deep-sea volcanoes were long-thought to be relatively uninteresting compared with those on land. While terrestrial volcanoes often produce spectacular eruptions, dispersing volcanic ash into the environment, it was thought that deep marine eruptions only produced slow moving lava flows.

But data gathered by remotely operated vehicles deep in the North East Pacific and analyzed by scientists at the University of Leeds, has revealed a link between the way ash is dispersed during submarine eruptions and the creation of large and powerful columns of heated water rising from the ocean floor, known as megaplumes.

Here is my inspiration source: https://curiositystream.com/AlexLab.
Use promo code AlexLab to get annual access just for 15$
Please, comment on what else Curiosity Stream episodes you liked.

Cosmos Elementary https://youtube.com/channel/UCBTUsDJaEqU-1rWBW1F0oog.

ABOUT VIDEO
We continue to build a Real Iron Man suit! In this part we make a leg exosuit part, hydrogen artificial muscles, and learn how to command them with EMG sensors.
Metal stuff, muscles, brains and night workshop aesthetic)
Like, subscribe, and share this video with your friends!
Your support is important to the success of the project.

ALEX LAB BLUEPRINTS

There is no cheaper way to generate electricity today than with the sun. Power plants are currently under construction in sunny locations that will supply solar electricity for less than 2 cents per kilowatt hour. Solar cells available on the market based on crystalline silicon make this possible with efficiencies of up to 23 percent. Therefore they hold a global market share of around 95 percent. With even higher efficiencies of more than 26 percent, costs could fall further. An international working group led by photovoltaics researchers from Forschungszentrum Jülich now plan to reach this goal with a nanostructured, transparent material for the front of solar cells and a sophisticated design. The scientists report on their success of many years of research in the renowned scientific journal Nature Energy.

Silicon have been steadily improved over the past decades and have already reached a very high level of development. However, the disturbing effect of recombination still occurs after the absorption of sunlight and the photovoltaic generation of electrical charge carriers. In this process, negative and positive charge carriers that have already been generated combine and cancel each other out before they could be used for the flow of . This effect can be countered by special materials that have a special property—passivation.

“Our nanostructured layers offer precisely this desired passivation,” says Malte Köhler, former Ph.D. student and first author from the Jülich Institute for Energy and Climate Research (IEK-5), who has since received his doctorate. In addition, the ultra-thin layers are transparent—so the incidence of light is hardly reduced—and exhibit high electrical conductivity.

In a Universal-nutshell, Physix assists the World (People, Government, Corporations, Non-Profits, Climate, Nature, Technology) in Making it Better!


Quality Vote or Q-vote.

Is an anonymous feedback voting and posting metric, via the scale as shown. It will display wave length patterns in how people feel on various topics after a user has voted on it. Eventually the team plans to allow commenting, that will also enable you to take a color rating feedback (timestamps) based on your comment, and others as well. This will give weighted value to these timestamped ratings comments when in competition with many on one post. It is currently in working alpha prototype testing mode now.

As they researched why the avalanche occurred with such force, researchers studying climate change pored over images taken in the days and weeks before and saw that ominous cracks had begun to form in the ice and snow. Then, scanning photos of a nearby glacier, they noticed similar crevasses forming, touching off a scramble to warn local authorities that it was also about to come crashing down.

The images of the glaciers came from a constellation of satellites no bigger than a shoebox, in orbit 280 miles up. Operated by San Francisco-based company Planet, the satellites, called Doves, weigh just over 10 pounds each and fly in “flocks” that today include 175 satellites. If one fails, the company replaces it, and as better batteries, solar arrays and cameras become available, the company updates its satellites the way Apple unveils a new iPhone.

The revolution in technology that transformed personal computing, put smart speakers in homes and gave rise to the age of artificial intelligence and machine learning is also transforming space. While rockets and human exploration get most of the attention, a quiet and often overlooked transformation has taken place in the way satellites are manufactured and operated. The result is an explosion of data and imagery from orbit.

Seawater is raising salt levels in coastal woodlands along the entire Atlantic Coastal Plain, from Maine to Florida. Huge swaths of contiguous forest are dying. They’re now known in the scientific community as “ghost forests.”


Trekking out to my research sites near North Carolina’s Alligator River National Wildlife Refuge, I slog through knee-deep water on a section of trail that is completely submerged. Permanent flooding has become commonplace on this low-lying peninsula, nestled behind North Carolina’s Outer Banks. The trees growing in the water are small and stunted. Many are dead.

Throughout coastal North Carolina, evidence of forest die-off is everywhere. Nearly every roadside ditch I pass while driving around the region is lined with dead or dying trees.

As an ecologist studying wetland response to sea level rise, I know this flooding is evidence that climate change is altering landscapes along the Atlantic coast. It’s emblematic of environmental changes that also threaten wildlife, ecosystems, and local farms and forestry businesses.

Russia is amassing unprecedented military might in the Arctic and testing its newest weapons in a region freshly ice-free due to the climate emergency, in a bid to secure its northern coast and open up a key shipping route from Asia to Europe.

Weapons experts and Western officials have expressed particular concern about one Russian ‘super-weapon,’ the Poseidon 2M39 torpedo. Development of the torpedo is moving fast with Russian President Vladimir Putin requesting an update on a “key stage” of the tests in February from his defence minister Sergei Shoigu, with further tests planned this year, according to multiple reports in state media.

This unmanned stealth torpedo is powered by a nuclear reactor and intended by Russian designers to sneak past coastal defences — like those of the US — on the sea floor.

New study points to potential widespread phagocytosis among green algae, suggests improved methodology in environmental microbiology.

New research suggests that the ability of green algae to eat bacteria is likely much more widespread than previously thought, a finding that could be crucial to environmental and climate science. The work, led by scientists at the American Museum of Natural History, Columbia University, and the University of Arizona, found that five strains of single-celled green algae consume bacteria when they are “hungry,” and only when those bacteria are alive. The study is published today in The ISME Journal.

“Traditionally, we think of green algae as being purely photosynthetic organisms, producing their food by soaking in sunlight,” said Eunsoo Kim, an associate curator at the American Museum of Natural History and one of the study’s corresponding authors. “But we’ve come to understand that there are potentially a number of species of green algae that also can eat bacteria when the conditions are right. And we’ve also found out just how finicky they are as eaters.”

Livescience.com|By LiveScience


A severe thunderstorm cloud that formed over the Pacific Ocean in 2018 reached the coldest temperatures ever recorded, according to a new study.

The very top of the storm cloud reached a bone-chilling minus 167.8 degrees Fahrenheit (minus 111 degrees Celsius), colder than any storm cloud measured before. Thunderstorms and tropical cyclones, a circular low-pressure storm, can reach very high altitudes — up to 11 miles (18 kilometers) from the ground — where the air is much cooler, according to a statement from the U.K.’s National Center for Earth Observation.

The recent eruptions in Iceland, vividly captured through dramatic drone footage, have drawn public attention to the immense power of volcanoes. Beautiful though they are, and mesmerizing to watch, they are also deadly.

History has recorded eruptions so spectacular they’ve never been forgotten. These include Krakatoa in 1883, whose explosion was heard around the world and Mount Tambora, which resulted in famines across the northern hemisphere.

But perhaps the most famous of all is the eruption of Vesuvius in Italy, in AD79, which sealed the Roman towns of Pompeii and Herculaneum beneath layers of ash.