Toggle light / dark theme

Year 2022 Basically this mechanoluminescence material can bring illumination to the mysterious info of stress in infrastructure so there could eventually be an easier way to measure aging infrastructure.


Both in Japan and other developed countries, social infrastructure built during periods of rapid economic growth is rapidly aging, and accidents involving aging infrastructure are becoming more frequent. The useful life of infrastructure is considered to be about 50 years due to the deterioration of concrete, a key component. Concrete eventually cracks due to internal chemical reactions and external forces, and so-called “moving cracks” that are gradually progressing due to the constant application of force are particularly dangerous. However, finding such cracks is a difficult task that requires significant time and effort. That’s why Nao Terasaki, a team leader at the National Institute of Advanced Industrial Science and Technology (AIST), and his colleagues have developed a luminescent material that helps reveal dangerous cracks by making them glow.

Studying Our Ocean’s History To Understanding Its Future — Dr. Emily Osborne, PhD, Ocean Chemistry & Ecosystems Division, National Oceanic and Atmospheric Administration (NOAA)


Dr Emily Osborne, Ph.D. (https://www.aoml.noaa.gov/people/emily-osborne/) is a Research Scientist, in the Ocean Chemistry and Ecosystems Division, at the Atlantic Oceanographic and Meteorological Laboratory.

The Atlantic Oceanographic and Meteorological Laboratory (AOML), a federal research laboratory, is part of the National Oceanic and Atmospheric Administration’s (NOAA) Office of Oceanic and Atmospheric Research (OAR), located in Miami in the United States. AOML’s research spans tropical cyclone and hurricanes, coastal ecosystems, oceans and human health, climate studies, global carbon systems, and ocean observations. It is one of ten NOAA Research Laboratories.

A biological method that produces metal nanoclusters using the electroactive bacterium Geobacter sulfurreducens could provide a cheap and sustainable solution to high-performance catalyst synthesis for various applications such as water splitting.

Metal nanoclusters contain fewer than one hundred atoms and are much smaller than nanoparticles. They have unique electronic properties but also feature numerous active sites available for catalysis on their surface. There are several synthetic methods for making nanoclusters, but most require multiple steps involving and harsh temperature and pressure conditions.

Biological methods are expected to deliver ecofriendly alternatives to conventional chemical synthesis. Yet, to date, they have only led to large nanoparticles in a wide range of sizes. “We found a way to control the size of the nanoclusters,” says Rodrigo Jimenez-Sandoval, a Ph.D. candidate in Pascal Saikaly’s group at KAUST.

There’s a theory that’s in vogue in astrochemistry called “Assembly Theory.” It posits that highly complex molecules—many acids, for example—could only come from living beings. The molecules are either part of living beings, or they’re things that intelligent living beings manufacture.

If Assembly Theory holds up, we could use it to search for aliens—by scanning distant planets and moons for complex molecules that should be evidence of living beings. That’s the latest idea from Assembly Theory’s originator, University of Glasgow chemist Leroy Cronin. “This is a radical new approach,” Cronin told The Daily Beast.

But not every expert agrees it would work—at least not anytime soon. To take chemical readings of faraway planets, scientists rely on spectroscopy. This is the process of interpreting a planet’s color palette to assess the possible mix of molecules in its atmosphere, land, and oceans.

Saturn ’s giant moon, Titan, is due to launch in 2027. When it arrives in the mid-2030s, it will begin a journey of discovery that could bring about a new understanding of the development of life in the universe. This mission, called Dragonfly, will carry an instrument called the Dragonfly Mass Spectrometer (DraMS), designed to help scientists hone in on the chemistry at work on Titan. It may also shed light on the kinds of chemical steps that occurred on Earth that ultimately led to the formation of life, called prebiotic chemistry.

Titan’s abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and the potential habitability of an extraterrestrial environment.

DraMS will allow scientists back on Earth to remotely study the chemical makeup of the Titanian surface. “We want to know if the type of chemistry that could be important for early pre-biochemical systems on Earth is taking place on Titan,” explains Dr. Melissa Trainer of NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

Quantum cloud computing makes quantum computing resources available to organizations, academics and other users through cloud technology.

Cloud-based quantum computers function at greater speeds, with higher computing power than conventional computers, because they employ the principles of quantum physics when solving complex computational problems.

Different types of quantum computers exist, such as quantum annealers, analog quantum simulators and universal quantum computers. Quantum annealers are considered the least powerful among quantum computers but work well to solve optimization problems. Analog quantum simulators, on the other hand, are powerful systems that can solve physics and biochemistry problems.

The living mycelium networks are capable of efficient sensorial fusion over very large areas and distributed decision making. The information processing in the mycelium networks is implemented via propagation of electrical and chemical signals en pair with morphological changes in the mycelium structure. These information processing mechanisms are manifested in experimental laboratory findings that show that the mycelium networks exhibit rich dynamics of neuron-like spiking behaviour and a wide range of non-linear electrical properties. On an example of a single real colony of Aspergillus niger, we demonstrate that the non-linear transformation of electrical signals and trains of extracellular voltage spikes can be used to implement logical gates and circuits.

For their new study, the researchers aimed to understand how quantum correlations inside a source material, be it a gas or a mineral, would impact the quantum properties of the light bursts coming out, if at all. “High harmonic generation is a very important area. And still, until recently, it was described by a classical picture of light,” Kaminer says.

In quantum mechanics, figuring out what’s going on with more than a few particles at the same time is notoriously difficult. Kaminer and Alexey Gorlach, a graduate student in his lab, used their COVID-imposed isolation to try to make progress on a fully quantum description of light emitted in high harmonics. “It’s really crazy; Alexey built a super complex mathematical description on a scale that we’ve never had before,” Kaminer says.

Next, to fully incorporate the quantum properties of the material used to generate this light, Kaminer and Gorlach teamed up with Andrea Pizzi, then a graduate student at the University of Cambridge and now a postdoctoral fellow at Harvard University.