Toggle light / dark theme

If you enjoyed this article or found it informative and wish to share it, you can do so from the following link: https://www.facebook.com/383136302314720/posts/564255487536133/


A.I. has already gotten to almost sci-fi levels of emulating brain activity, so much so that amputees can experience mind-controlled robotic arms, and neural networks might soon be a thing. That still wasn’t enough for the brains behind one ambitious startup, though.

Cortical Labs sounds like it could have been pulled from the future. Co-founder and CEO Hong Wen Chong and his team are merging biology and technology by embedding real neurons onto a specialized computer chip. Instead of being programmed to act like a human brain, it will use those neurons to think and learn and function on its own. The hybrid chips will save tremendous amounts of energy with an actual neuron doing the processing for them.

In an effort to make highly sensitive sensors to measure sugar and other vital signs of human health, Iowa State University’s Sonal Padalkar figured out how to deposit nanomaterials on cloth and paper.

Feedback from a peer-reviewed paper published by ACS Sustainable Chemistry and Engineering describing her new fabrication technology mentioned the metal-oxide nanomaterials the assistant professor of mechanical engineering was working with—including , cerium oxide and copper oxide, all at scales down to billionths of a meter—also have .

“I might as well see if I can do something else with this technology,” Padalkar said. “And that’s how I started studying antimicrobial uses.”

In satellite photos of the Earth, clouds of bright green bloom across the surface of lakes and oceans as algae populations explode in nutrient-rich water. From the air, the algae appear to be the primary players in the ecological drama unfolding below.

But those we credit for influencing the aquatic environment at the base of the food chain may be under the influence of something else: whose can reconfigure their hosts’ metabolism.

In a new study published in Nature Communications, a research team from Virginia Tech reported that they had found a substantial collection of genes for metabolic cycles—a defining characteristic of cellular life—in a wide range of “.”

This could lead to biological teleportation. :3.


Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.

Over the past decade, the field of quantum biology has seen an enormous increase in activity, with detailed studies of phenomena ranging from the primary processes in vision and photosynthesis to avian navigation (1, 2). In principle, the study of quantum effects in complex biological systems has a history stretching back to the early years of quantum mechanics (3); however, only recently has it truly taken center stage as a scientifically testable concept. While the overall discussion has wide-ranging ramifications, for the purposes of this Review, we will focus on the subfield where the debate is most amenable to direct experimental tests of purported quantum effects—photosynthetic light harvesting.

In femtosecond multidimensional spectroscopy of several pigment-protein complexes (PPCs), we find what has been widely considered the experimental signature of nontrivial quantum effects in light harvesting: oscillatory signals—the spectroscopic characteristic of “quantum coherence.” These signals, or rather their interpretation with the associated claims of a direct link to the system’s “quantumness” (4), have drawn enormous attention, much of it from scientists outside the immediate community of photosynthetic light harvesting (5). While significant efforts have been spent on interpreting these weak signals, the overall debate has raised important questions of a general nature (6). What is uniquely “quantum” in biology? What “nontrivial quantum effects” can be considered as the origin of observable biological phenomena?

:0000


This article follows on from several others on this theme that I wrote some time ago, for details of which see footnote.

The idea of the earth as a superorganism re-emerged in modern times with the work of the independent scientist James Lovelock and his Gaia hypothesis. This was developed further by the spiritually oriented writer Peter Russell in The Awakening Earth.

When Lovelock published the first edition, where he described the Earth as a kind of self-regulating, living organism, he was attacked by biologists who said that this could not have emerged through a process of natural selection, thus contradicting Darwinian theory, the dominant biological paradigm. Even worse, “one critic referred to it scathingly as a fairy story about a Greek goddess”. These are statements typical of modern materialist, Enlightenment science for, as Lovelock says, “the idea of Mother Earth or, as the Greeks called her, Gaia, has been widely held throughout history and has been the basis of a belief that coexists with the great religions”.

Sediment layers in rock or tree rings can hold clues to what the environment was like at different times in the past – and the same idea may even apply to your own teeth. Scientists at New York University have found that the material that makes up tooth roots preserves a lifelong record of stresses on the body, such as childbirth, illness, and even prison time.

While most of a tooth doesn’t grow once it’s popped up in your jaw, the tissue around the roots do. Known as cementum, this stuff regularly adds new layers after the tooth surfaces. And for this study, the researchers investigated the hypothesis that major physiological events would leave their mark in these layers.

To test the idea, the team examined 47 teeth from 15 different people, between the ages of 25 and 69. The life histories of all of these people were known, including things like whether they’d given birth, had major illnesses or even moved from rural to urban areas. Crucially, they also knew what ages these events had occurred.

A team of scientists, led by the University of Bristol, has developed a new photosynthetic protein system enabling an enhanced and more sustainable approach to solar-powered technological devices.

The initiative is part of a broader effort in the field of to use proteins in place of man-made materials which are often scarce, expensive and can be harmful to the environment when the device becomes obsolete.

The aim of the study, published today in Nature Communications, was the development of “chimera” complexes that display poly-chromatic solar energy harvesting.