Toggle light / dark theme

Joscha Bach — Strong AI: Why we should be concerned

Title: Strong AI: Why we should be concerned about something nobody knows how to build.
Synopsis: At the moment, nobody fully knows how to create an intelligent system that rivals or exceed human capabilities (Strong AI). The impact and possible dangers of Strong AI appear to concern mostly those futurists that are not working in day-to-day AI research. This in turn gives rise to the idea that Strong AI is merely a myth, a sci fi trope and nothing that is ever going to be implemented. The current state of the art in AI is already sufficient to lead to irrevocable changes in labor markets, economy, warfare and governance. The need to deal with these near term changes does not absolve us from considering the implications of being no longer the most intelligent beings on this planet.
Despite the difficulties of developing Strong AI, there is no obvious reason why the principles embedded in biological brains should be outside of the range of what our engineering can achieve in the near future. While it is unlikely that current narrow AI systems will neatly scale towards general modeling and problem solving, many of the significant open questions in developing Strong AI appear to be known and solvable.

Talk held at ‘Artificial Intelligence / Human Possibilities’ event as adjunct to the AGI17 conference in Melbourne 2017.

Assessing emerging risks and opportunities in machine cognition.

With AI Experts Ben Goertzel, Marcus Hutter, Peter Cheeseman and Joscha Bach.

Event Focus:
Given significant developments in Artificial Intelligence, it’s worth asking: What aspects of ideal AI have not been achieved yet?
There is good reason for the growing media storm around AI — many experts agree on the big picture that with the development of Superintelligent AI (including Artificial General Intelligence) humanity will face great challenges (some polls suggest that AGI is not far). Though in order to best manage both the opportunities and risks we need to achieve a clearer picture — this requires sensitivity to ambiguity, precision of expression and attention to theoretical detail in understanding the implications of AI, communicating/discussing AI, and ultimately engineering beneficial AI.

Meetup details: https://www.meetup.com/Science-Technology-and-the-Future/events/242163071/

Time: Do the past, present, and future exist all at once?

Everything we do as living organisms is dependent, in some capacity, on time. The concept is so complex that scientists still argue whether it exists or if it is an illusion.

In this video, astrophysicist Michelle Thaller, science educator Bill Nye, author James Gleick, and neuroscientist Dean Buonomano discuss how the human brain perceives of the passage of time, the idea in theoretical physics of time as a fourth dimension, and the theory that space and time are interwoven.

Thaller illustrates Einstein’s theory of relativity, Buonomano outlines eternalism, and all the experts touch on issues of perception, definition, and experience.

The World in 2200: Top 10 Future Technologies

This video covers the world in 2,200 and its future technologies. Watch this next video about the world in 2300: https://bit.ly/3CMVJYY.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7
https://www.realclearscience.com/blog/2020/10/29/3_ways_to_m…ethod.html.

Patreon Page: https://www.patreon.com/futurebusinesstech.
Official Discord Server: https://discord.gg/R8cYEWpCzK

💡 On this channel, I explain the following concepts:
• Future and emerging technologies.
• Future and emerging trends related to technology.
• The connection between Science Fiction concepts and reality.

SUBSCRIBE: https://bit.ly/3geLDGO

Disclaimer:

The World in a Million Years: Top 7 Future Technologies

This video covers the world in a million years and its future technologies. Watch this next video about the world in 10,000 A.D.: bit.ly/373KvDr.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7

Patreon Page: https://www.patreon.com/futurebusinesstech.
Official Discord Server: https://discord.gg/R8cYEWpCzK

💡 On this channel, I explain the following concepts:
• Future and emerging technologies.
• Future and emerging trends related to technology.
• The connection between Science Fiction concepts and reality.

SUBSCRIBE: https://bit.ly/3geLDGO

Disclaimer:

The World in 10,000 A.D.: Top 7 Future Technologies

This video covers the world in 10,000 A.D. and its future technologies. Watch this next video about the world in a million years: https://bit.ly/3xe50by.
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7

Patreon Page: https://www.patreon.com/futurebusinesstech.
Official Discord Server: https://discord.gg/R8cYEWpCzK

💡 On this channel, I explain the following concepts:
• Future and emerging technologies.
• Future and emerging trends related to technology.
• The connection between Science Fiction concepts and reality.

SUBSCRIBE: https://bit.ly/3geLDGO

Disclaimer:

Chaotic circuit exhibits unprecedented equilibrium properties

Mathematical derivations have unveiled a chaotic, memristor-based circuit in which different oscillating phases can co-exist along six possible lines.

Unlike ordinary electronic circuits, chaotic circuits can produce oscillating that never repeat over time—but nonetheless, display underlying mathematical patterns. To expand the potential applications of these circuits, previous studies have designed systems in which multiple oscillating phases can co-exist along mathematically-defined “lines of .” In new research published in The European Physical Journal Special Topics, a team led by Janarthanan Ramadoss at the Chennai Institute of Technology, India, designed a chaotic circuit with six distinct lines of equilibrium—more than have ever been demonstrated previously.

Chaotic systems are now widely studied across a broad range of fields: from biology and chemistry, to engineering and economics. If the team’s circuit is realized experimentally, it could provide researchers with unprecedented opportunities to study these systems experimentally. More practically, their design could be used for applications including robotic motion control, secure password generation, and new developments in the Internet of Things—through which networks of everyday objects can gather and share data.

3D-printed, laser-cooked meat may be the future of cooking

A future kitchen appliance could make it possible to 3D-print entirely new recipes and cook them with lasers.

That is the long-term vision at Columbia University’s Creative Machines Lab, an engineering group that uses insight from biology to research and develop autonomous systems that “create and are creative.” The engineers have spent years working to digitize and automate the cooking process.


A recent study suggests that future kitchen appliances could make it possible to 3D-print entirely new recipes and cook them with lasers.

Research Team Reveals A ‘Blueprint’ for Photosynthesis

This story is adapted from a news release from Michigan State University-By Matt Davenport Researchers at Michigan State University (MSU), UC Berkeley, the University of Southern Bohemia, and Lawrence Berkeley National Laboratory (Berkeley Lab) have helped reveal the most detailed picture to date of important biological “antennae.” Nature has evolved these structures to harness the sun’s energy through photosynthesis, but these sunlight receivers don’t belong to plants. They’re found in microbes known as cyanobacteria, the evolutionary descendants of the first organisms on Earth capable of taking sunlight, water, and carbon dioxide and turning them into sugars and oxygen. Published.

Study finds tiny brain area controls work for rewards

A tiny but important area in the middle of the brain acts as a switch that determines when an animal is willing to work for a reward and when it stops working, according to a study published Aug. 31 in the journal Current Biology.

“The study changes how we think about this particular region,” said senior author Melissa Warden, assistant professor and Miriam M. Salpeter Fellow in the Department of Neurobiology and Behavior, which is shared between the College of Arts and Sciences and the College of Agriculture and Life Sciences.

“It has implications for psychiatric disorders, particularly depression and anxiety,” Warden said.

Making Computer Chips Act More like Brain Cells

The human brain is an amazing computing machine. Weighing only three pounds or so, it can process information a thousand times faster than the fastest supercomputer, store a thousand times more information than a powerful laptop, and do it all using no more energy than a 20-watt lightbulb.

Researchers are trying to replicate this success using soft, flexible organic materials that can operate like biological neurons and someday might even be able to interconnect with them. Eventually, soft “neuromorphic” computer chips could be implanted directly into the brain, allowing people to control an artificial arm or a computer monitor simply by thinking about it.

Like real neurons — but unlike conventional computer chips — these new devices can send and receive both chemical and electrical signals. “Your brain works with chemicals, with neurotransmitters like dopamine and serotonin. Our materials are able to interact electrochemically with them,” says Alberto Salleo, a materials scientist at Stanford University who wrote about the potential for organic neuromorphic devices in the 2021 Annual Review of Materials Research.