Menu

Blog

Latest posts

May 22, 2024

Wav-KAN: Wavelet Kolmogorov-Arnold Networks

Posted by in categories: innovation, robotics/AI

The codes to replicate the simulations of the paper: Available at: https://arxiv.org/abs/2405.12832 and also: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4835325

For now, we just added the codes to…


In this paper, we introduce Wav-KAN, an innovative neural network architecture that leverages the Wavelet Kolmogorov-Arnold Networks (Wav-KAN) framework to enhance interpretability and performance. Traditional multilayer perceptrons (MLPs) and even recent advancements like Spl-KAN \cite{kan} face challenges related to interpretability, training speed, robustness, computational efficiency, and performance. Wav-KAN addresses these limitations by incorporating wavelet functions into the Kolmogorov-Arnold network structure, enabling the network to capture both high-frequency and low-frequency components of the input data efficiently. Wavelet-based approximations employ orthogonal or semi-orthogonal basis and also maintains a balance between accurately representing the underlying data structure and avoiding overfitting to the noise. Analogous to how water conforms to the shape of its container, Wav-KAN adapts to the data structure, resulting in enhanced accuracy, faster training speeds, and increased robustness compared to Spl-KAN and MLPs. Our results highlight the potential of Wav-KAN as a powerful tool for developing interpretable and high-performance neural networks, with applications spanning various fields. This work sets the stage for further exploration and implementation of Wav-KAN in frameworks such as PyTorch, TensorFlow, and also it makes wavelet in KAN in wide-spread usage like nowadays activation functions like ReLU, sigmoid in universal approximation theory (UAT).

May 22, 2024

Mysterious element promethium finally reveals its chemical properties

Posted by in category: chemistry

O.o!!!


The highly unstable radioactive element promethium is hard to study in the lab, but chemists have now coaxed it into forming a compound in water so they can observe its bonding behaviour.

May 22, 2024

The tunable coupling of two distant superconducting spin qubits

Posted by in categories: computing, quantum physics

Quantum computers, computing devices that leverage the principles of quantum mechanics, could outperform classical computing on some complex optimization and processing tasks. In quantum computers, classical units of information (bits), which can either have a value of 1 or 0, are substituted by quantum bits or qubits, which can be in a mixture of both 0 and 1 simultaneously.

May 22, 2024

New Discovery Pinpoints Origin of Sun’s Magnetic Field

Posted by in categories: space, supercomputing

The Sun’s magnetic field is an incredibly powerful mechanism that produces equally powerful solar storms, some of which resulted in the recent aurora activity observed as far south as the State of Florida. However, in the 400 years since Galileo Galilei first discovered the Sun’s magnetic field, scientists have been stumped regarding where inside the Sun the magnetic field originates. This is what a study published today in Nature hopes to address as a team of international researchers have discovered how deep inside the Sun the magnetic field originates, which holds the potential to help scientists better understand and predict solar storms.

“Understanding the origin of the sun’s magnetic field has been an open question since Galileo and is important for predicting future solar activity, like flares that could hit the Earth,” said Dr. Daniel Lecoanet, who is an Assistant Professor of Engineering Sciences and Applied Mathematics at Northwestern University and a co-author on the study. “This work proposes a new hypothesis for how the sun’s magnetic field is generated that better matches solar observations, and, we hope, could be used to make better predictions of solar activity.”

For the study, the researchers used a NASA supercomputer to conduct several calculations to ascertain if the source of the Sun’s magnetic field was close to the surface or much deeper, as previous hypotheses have stated the magnetic field’s source is more than 130,000 miles beneath the surface of the Sun. In the end, the researchers of this latest study estimated the source of the Sun’s magnetic field is approximately 20,000 miles beneath the surface. For context, the diameter of the Sun is just over 865,000 miles across, so these new findings indicate the magnetic field originates approximately 2 percent beneath the Sun’s surface, as opposed to 15 percent based on the previous hypotheses.

May 22, 2024

John Brockman

Posted by in categories: futurism, robotics/AI

editor of[Possible Minds: Twenty-Five Ways of Looking at AI], talked about the future of artificial intelligence with two contributors to the book, David Chalmers and Daniel Dennett.

May 22, 2024

E93D9D10-8F2E-11EE-9992-848E0B983C7D.pdf

Posted by in category: futurism

Does thought require sensory grounding by David Chalmers.


Shared with Dropbox.

May 22, 2024

Plotnitsky’s New Perspective On Schrödinger’s Cat Experiment Challenges Quantum Understanding

Posted by in category: quantum physics

I found this on NewsBreak.


The Schrödinger’s Cat Experiment, a paradox illustrating the concept of superposition in quantum mechanics, has been reinterpreted by Purdue University’s Professor Arkady Plotnitsky. His perspective, based on “reality without realism” (RWR) interpretations, suggests that the reality behind quantum phenomena is beyond conception. This view repositions classical physics as part of fundamental physics, a role typically reserved for quantum physics and relativity. This new interpretation challenges traditional understanding of the experiment and suggests our comprehension of reality is insufficient to fully grasp quantum phenomena. This perspective opens new research avenues in quantum physics and emphasizes the importance of philosophical considerations in physics study.

The Schrödinger’s Cat Experiment is a thought experiment proposed by physicist Erwin Schrödinger. It is a paradox that illustrates the concept of superposition in quantum mechanics. The experiment involves a cat that is placed in a sealed box with a radioactive source and a poison that will be released when the radioactive source decays. According to quantum mechanics, the cat is both alive and dead until the box is opened and the cat’s state is observed.

Continue reading “Plotnitsky’s New Perspective On Schrödinger’s Cat Experiment Challenges Quantum Understanding” »

May 22, 2024

STIs, including syphilis, gonorrhea, increasing globally: WHO

Posted by in category: futurism

The World Health Organization (WHO) released a report Tuesday that found the number of sexually transmitted infections have increased around the world.

May 22, 2024

A Quartz Thermal Trap Harnessed the Sun—and Is About to Change Smelting Forever

Posted by in category: materials

Eco-friendly advancements promise a cleaner, greener approach to producing essential materials.

May 22, 2024

Unlocking the Quantum Code: International Team Cracks a Long-Standing Physics Problem

Posted by in categories: computing, quantum physics

“In quantum many-body theory, we are often faced with the situation that we can perform calculations using a simple approximate interaction, but realistic high-fidelity interactions cause severe computational problems,” says Dean Lee, Professor of Physics from the Facility for Rare Istope Beams and Department of Physics and Astronomy (FRIB) at Michigan State University and head of the Department of Theoretical Nuclear Sciences.

Practical Applications and Future Prospects

Wavefunction matching solves this problem by removing the short-distance part of the high-fidelity interaction and replacing it with the short-distance part of an easily calculable interaction. This transformation is done in a way that preserves all the important properties of the original realistic interaction. Since the new wavefunctions are similar to those of the easily computable interaction, the researchers can now perform calculations with the easily computable interaction and apply a standard procedure for handling small corrections – called perturbation theory.

Page 1 of 11,19612345678Last