Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Diabetes drug cuts migraines in half by targeting brain pressure

A common diabetes drug may be the next big thing for migraine relief. In a clinical study, obese patients with chronic migraines who took liraglutide, a GLP-1 receptor agonist, experienced over 50% fewer headache days and significantly improved daily functioning without meaningful weight loss. Researchers believe the drugs ability to lower brain fluid pressure is the key, potentially opening a completely new way to treat migraines. The effects were fast, sustained, and came with only mild side effects.

A diabetes medication that lowers brain fluid pressure has cut monthly migraine days by more than half, according to a new study presented today at the European Academy of Neurology (EAN) Congress 2025.

Researchers at the Headache Center of the University of Naples “Federico II” gave the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide to 26 adults with obesity and chronic migraine (defined as ≥15 headache days per month). Patients reported an average of 11 fewer headache days per month, while disability scores on the Migraine Disability Assessment Test dropped by 35 points, indicating a clinically meaningful improvement in work, study, and social functioning.

Scientists reverse Parkinson’s symptoms in mice — Could humans be next?

Scientists at the University of Sydney have uncovered a malfunctioning version of the SOD1 protein that clumps inside brain cells and fuels Parkinson’s disease. In mouse models, restoring the protein’s function with a targeted copper supplement dramatically rescued movement, hinting at a future therapy that could slow or halt the disease in people.

Why Different Neuron Parts Learn Differently?

To try everything Brilliant has to offer—free—for a full 30 days, visit https://brilliant.org/ArtemKirsanov. You’ll also get 20% off an annual premium subscription.

Socials:
X/Twitter: https://twitter.com/ArtemKRSV
Patreon: https://patreon.com/artemkirsanov.

My name is Artem, I’m a graduate student at NYU Center for Neural Science and researcher at Flatiron Institute. In this video we explore a recent study published in Science, which revealed that different compartments of pyramidal neurons (apical vs basal dendrites) use different plasticity rules for learning.

Link to the paper:
https://www.science.org/doi/10.1126/science.ads4706

Outline:
00:00 Introduction.
01:23 Synaptic transmission.
06:09 Molecular machinery of LTP
08:40 Hebbian plasticity.
11:21 Non-Hebbian plasticity.
12:51 Hypothesis.
14:42 Experimental methods.
17:10 Result: compartmentalized plasticity.
19:30 Interpretation.
22:01 Brilliant.
23:08 Outro.

Music by Artlist.

“We Might Be Seeing a New Force”: Physicists Detect Possible Fifth Law of Nature Hidden Deep Inside Atomic Structures

IN A NUTSHELL 🔬 Physicists from Germany, Switzerland, and Australia have identified potential evidence of a mysterious fifth force within atoms. 📏 The discovery challenges the Standard Model of physics, which traditionally categorizes forces into four main types. 🧩 Researchers propose the existence of a hypothetical Yukawa particle that could mediate this new force within

The future of engineering biology — with Angela McLean

Join Dame Angela McLean, the Government’s Chief Scientific Adviser, as she discusses the transformative potential of the field of engineering biology.

This Discourse was recorded at the Ri on 25 April 2025. Find out more about Discourses here: https://www.rigb.org/explore-science/explore/blog/history-fr…-discourse.

Watch the Q&A here (exclusively for subscribers): https://youtu.be/GKRTtoEpFeI
Join this channel to get access to perks:
https://www.youtube.com/channel/UCYeF244yNGuFefuFKqxIAXw/join.

The field of engineering biology uses the whole span of biological sciences in conjunction with technology and engineering to benefit multiple sectors and our society more broadly.

But as a relatively new field, scientists still have many unanswered questions. What are the key opportunities and risks it presents? What barriers stand in the way of engineering biology revolutionising society?

Dame Angela McLean, the Government Chief Scientific Adviser, has been considering the scientific evidence behind the many claims – both utopian and dystopian – associated with research and innovation in engineering biology. In this Discourse, Dame Angela shares what she has learned from her “Year of Engineering Biology”, describing her vision for this suite of technologies and the applications she expects to emerge over the next decade and beyond.

The Future Mind — A Conversation with Robert Lawrence Kuhn and Alex Gómez-Marin

A Conversation between Robert Lawrence Kuhn and Àlex Gómez-Marín.

The conversation will explore “a landscape of consciousness”, toward a taxonomy of explanations and implications.

In 2024, Àlex will curate and host conversations to address The Future Mind, seeking to gain clarity and insight into important contemporary matters that require both urgent action as well as deep reflection.

Recorded January 31, 2024

Healthy lifestyle linked to lower diverticulitis risk, irrespective of genetic susceptibility

Maintaining a healthy lifestyle—specifically, a diet rich in fiber but light on red/processed meat, regular exercise, not smoking, and sticking to a normal weight—is linked to a significantly lower risk of diverticulitis, finds a large long-term study, published online in the journal Gut.

What’s more, these five components seem to offset the effects of inherited genes, the findings indicate.

Diverticulitis occurs when “pouches” develop along the gut and become inflamed or infected in the wall of the large intestine (colon), explain the researchers. It’s a common cause of hospital admissions and a major reason for emergency colon surgery, they add.

Brain tumor growth patterns may help inform patient care management

As brain tumors grow, they must do one of two things: push against the brain or use finger-like extensions to invade and destroy surrounding tissue.

Previous research found that tumors that push—or put mechanical force on the brain—cause more neurological dysfunction than tumors that destroy tissue. But what else can these different tactics of tumor growth tell us?

Now, the same team of researchers from the University of Notre Dame, Harvard Medical School/Massachusetts General Hospital, and Boston University has developed a technique for measuring a brain tumor’s mechanical force and a new model to estimate how much brain tissue a patient has lost. Published in Clinical Cancer Research, the study explains how these measurements may help inform patient care and be adopted into surgeons’ daily workflow.