Menu

Blog

Jan 8, 2019

‘Flipped’ metal oxide cage can sort CO2 from CO

Posted by in categories: particle physics, space, sustainability

How do you separate carbon dioxide from carbon monoxide? One way, showcased by a new study from Kanazawa University, is to use a bowl of vanadium. More precisely, a hollow, spherical cluster of vanadate molecules can discriminate between CO and CO2, allowing potential uses in CO2 storage and capture.

At the molecular scale, small objects can fit inside larger ones, just like in the everyday world. The resulting arrangements, known as host-guest interactions, are stabilized by non-covalent forces like electrostatics and hydrogen bonds. Each host will happily take in certain molecules, while shutting out others, depending on the size of its entrance and how much interior space it can offer the guest.

Anion Structures of CH2Cl2(Guest)-Inserted V12 and Guest-Free V12

Anion structures of CH2 Cl2 (guest)-inserted V12 (left) and guest-free V12 are shown. Orange and red square pyramids represent VO 5 units with their bases directed to the center of the bowl, and the inverted VO 5 unit. Green and black spheres represent Cl and C, respectively. Hydrogen atoms of CH2 Cl2 are omitted for clarity. (Image: Kanazawa University)

Read more

Comments are closed.