Toggle light / dark theme

A Manufacturing Approach That Brings Diamond Quantum Photonics Closer To Industrial Production (MIT, KAUST et al.)

“Foundry-Enabled Patterning of Diamond Quantum Microchiplets for Scalable Quantum Photonics” was published by researchers at MIT, KAUST, PhotonFoundries and MITRE.

Abstract

Quantum technologies promise secure communication networks and powerful new forms of information processing, but building these systems at scale remains a major challenge. Diamond is an especially attractive material for quantum devices because it can host atomic-scale defects that emit single photons and store quantum information with exceptional stability. However, fabricating the optical structures needed to control light in diamond typically relies on slow, bespoke processes that are difficult to scale. In this work, we introduce a manufacturing approach that brings diamond quantum photonics closer to industrial production. Instead of sequentially defining each device by lithography written directly on diamond, we fabricate high-precision silicon masks using commercial semiconductor foundries and transfer them onto diamond via microtransfer printing.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.

/* */