Engineers have long battled a problem that can cause loud, damaging oscillations inside gas turbines and aircraft engines: combustion instability. These unwanted pressure fluctuations create vibrations so intense that they can cause fatal structural damage to combustor walls, posing a serious threat in many applications. Combustion instability occurs when acoustic waves, heat release, and flow patterns interact in a strong feedback loop, amplifying each other until the entire system becomes unstable.
The complex interaction has made it difficult to predict when and where dangerous oscillations will emerge. This challenge has motivated researchers to seek new analytical frameworks that can capture the key driving regions of combustion instability.
Now, a research team led by Professors Hiroshi Gotoda from Tokyo University of Science and Ryoichi Kurose from Kyoto University, Japan, has developed an innovative approach using network science to understand and suppress combustion instability. Their paper, published in the journal Physical Review Applied on July 1, 2025, applies complex network analysis to spray combustion instability in a backward-facing step combustor.
