A groundbreaking study from Brown University Health researchers has identified a crucial factor that may help improve treatment for glioblastoma, one of the most aggressive and common forms of adult brain cancer. The findings, published November 10 in Cell Reports, reveal how differences among cells within a single tumor influence the cancer’s response to chemotherapy, and introduce a promising new therapy designed to tip the odds in the patients’ favor.
Glioblastoma is notoriously difficult to treat. One of the key reasons is that no two cells within the tumor behave exactly alike. Even inside one tumor, some cells may respond to treatment while others resist it, allowing the cancer to persist and grow. For decades, scientists have known that tumors are composed of diverse cells, but the biological forces driving these differences, and their impact on treatment, have remained elusive.
“Traditionally, researchers have focused on the overall behavior of a tumor by studying the average response across all the individual cells, using differences between the cells to interpret the average,” said senior author Clark Chen, MD, PhD, professor and director of the brain tumor program, department of neurosurgery at Brown University Health. “Our study fundamentally flipped that approach. Rather than focusing on the average response, we focused on the differences between individual cells within the same tumor, and what we found could change how we treat glioblastoma.”
