Toggle light / dark theme

Peanut butter and jelly. Simon and Garfunkel. Semiconductors and bacteria. Some combinations are more durable than others. In recent years, an interdisciplinary team of Cornell researchers has been pairing microbes with the semiconductor nanocrystals known as quantum dots, with the goal of creating nano-biohybrid systems that can harvest sunlight to perform complex chemical transformations for materials and energy applications.

Now, the team has for the first time identified exactly what happens when a microbe receives an electron from a quantum dot: The charge can either follow a direct pathway or be transferred indirectly via the microbe’s shuttle molecules.

The findings are published in Proceedings of the National Academy of Sciences. The lead author is Mokshin Suri.

Leave a Comment