In a breakthrough that could transform bioelectronic sensing, an interdisciplinary team of researchers at Rice University has developed a new method to dramatically enhance the sensitivity of enzymatic and microbial fuel cells using organic electrochemical transistors (OECTs). The research was recently published in the journal Device.
The innovative approach amplifies electrical signals by three orders of magnitude and improves signal-to-noise ratios, potentially enabling the next generation of highly sensitive, low-power biosensors for health and environmental monitoring.
“We have demonstrated a simple yet powerful technique to amplify weak bioelectronic signals using OECTs, overcoming previous challenges in integrating fuel cells with electrochemical sensors,” said corresponding author Rafael Verduzco, professor of chemical and biomolecular engineering and materials science and nanoengineering. “This method opens the door to more versatile and efficient biosensors that could be applied in medicine, environmental monitoring and even wearable technology.”