Menu

Blog

Dec 19, 2024

Antineutrino detection gets a boost with novel plastic scintillator

Posted by in categories: nuclear energy, particle physics

How do you find and measure nuclear particles, like antineutrinos, that travel near the speed of light?

Antineutrinos are the antimatter partner of a neutrino, one of nature’s most elusive and least understood subatomic particles. They are commonly observed near nuclear reactors, which emit copious amounts of antineutrinos, but they also are found abundantly throughout the universe as a result of Earth’s natural radioactivity, with most of them originating from the decay of potassium-40, thorium-232 and uranium-238 isotopes.

When an antineutrino collides with a proton, a positron and a neutron are produced—a process known as inverse beta decay (IBD). This event causes scintillating materials to light up, making it possible to detect these antineutrinos; and if they can be detected, they can be used to study the properties of a reactor’s core or Earth’s interior.

Leave a reply