Toggle light / dark theme

Experiment opens door for millions of qubits on one chip

Posted in computing, quantum physics

Researchers from the University of Basel and the NCCR SPIN have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough, reported in Nature Physics (“Anisotropic exchange interaction of two-hole spin qubits”), opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.

Two interacting hole-spin qubits: As a hole (magenta/yellow) tunnels from one site to the other, its spin rotates due to spin-orbit coupling, leading to anisotropic interactions represented by the surrounding bubbles. (Image: NCCR SPIN)

The race to build a practical quantum computer is well underway. Researchers around the world are working on a huge variety of qubit technologies. So far, there is no consensus on what type of qubit is most suitable for maximizing the potential of quantum information science.