Muon spectroscopy serves as a crucial experimental method for exploring the magnetic characteristics of materials. This technique involves embedding a spin-polarized muon within the crystal lattice and observing the impact of the surrounding environment on its behavior. It operates on the principle that the muon will settle into a specific location predominantly influenced by electrostatic forces, a position that can be pinpointed through the calculation of the material’s electronic structure.
But a new study led by scientists in Italy, Switzerland, UK, and Germany has found that, at least for some materials, that is not the end of the story: the muon site can change due to a well-known but previously neglected effect, magnetostriction.
Pietro Bonfà from the University of Parma, lead author of the study just published in Physical Review Letters, explains that his group and their colleagues at the University of Oxford (UK) have been using density-functional theory (DFT) simulations for at least a decade to find muon sites.
Comments are closed.