Toggle light / dark theme

Ora Biomedical, in partnership with Rapamycin Longevity Lab, announces the successful funding of the first subproject under its ambitious initiative to conduct a rapid lifespan analysis of 601 mTOR inhibitors in roundworms.

With $50,000 secured, Ora Biomedical will now commence the next phase of the first subproject. This will be a high-throughput screening of 301 mTOR inhibitors using its cutting-edge WormBot-AI technology. This milestone marks an important step toward identifying next-generation compounds that could be more effective than rapamycin, which is currently seen as the golden standard because of its good longevity effects in multiple species.

Mitchell Lee, CEO of Ora Biomedical, emphasized the importance of this research by stating: “The potential of targeting aging to broadly improve healthy lifespan is clear from decades of studies with compounds like rapamycin. However, even for well-validated molecular targets like mTOR, we still don’t know the best interventions. We at Ora Biomedical are proud to partner with Rapamycin Longevity Lab to advance our understanding around targeting mTOR and related kinases for maximizing healthy lifespan. None of this work is possible without support from visionary donors and organizations like the Lifespan Research Institute, the nonprofit behind Lifespan.io, with whom we have partnered to create pathways for donations to advance longevity science. To all those involved, thank you again, and we are excited to get to work!”

The current prototype impressively produces 200 milliliters of hydrogen per hour with a promising 12.6% energy efficiency.

“Water and energy are both critically needed for our everyday life, but typically, if you want to produce more energy, you have to consume more water,” said Lenan Zhang, assistant professor in the Sibley School of Mechanical and Aerospace Engineering in Cornell Engineering, who led the project.

Zhang added: “On the other hand, we need drinking water, because two-thirds of the global population are facing water scarcity. So there is a bottleneck in green hydrogen production, and that is reflected in the cost.”

Silicon Valley startup Lightmatter has developed a novel computer chip that can speed up artificial intelligence processes and save electricity in the process. The company focuses on using beams of light to move data between computers rather than using electric signals.

Connection speeds are a great matter of concern when it comes to artificial intelligence due to its complex software. This complexity requires the software to be spread over many computers.

When it comes to early detection of cognitive impairment, a new study suggests that the nose knows. Researchers from Mass General Brigham have developed olfactory tests—in which participants sniff odor labels that have been placed on a card—to assess people’s ability to discriminate, identify and remember odors. They found that participants could successfully take the test at home and that older adults with cognitive impairment scored lower on the test than cognitively normal adults.

Results are published in Scientific Reports.

“Early detection of cognitive impairment could help us identify people who are at risk of Alzheimer’s disease and intervene years before memory symptoms begin,” said senior author Mark Albers, MD, Ph.D., of the Laboratory of Olfactory Neurotranslation, the McCance Center for Brain Health, and Department of Neurology at Massachusetts General Hospital.

A waste gum produced by trees found in India could be the key to unlocking a new generation of better-performing, more eco-friendly supercapacitors, researchers say.

Scientists from universities in Scotland, South Korea and India are behind the development, which harnesses the unique properties of the otherwise useless tree gum to prevent supercapacitors from degrading over tens of thousands of charging cycles.

The team’s finding could help reduce the environmental impact of supercapacitors, an energy storage technology which carry less overall power than conventional batteries but charge and discharge much more quickly.