A new laser-based cooling scheme approaches the maximum efficiency that is theoretically achievable.
Much of the progress in 20th-century physics has centered around understanding the interaction between light and matter. The availability of well-controlled light sources—lasers—enabled experimental exploration of controlled light–matter interactions and, specifically, methods to cool atoms close to absolute zero temperatures [1, 2]. Several laser-cooling methods, such as Doppler cooling and resolved sideband cooling, are used routinely to prepare controlled quantum states of atoms. Brennen de Neeve of the Swiss Federal Institute of Technology (ETH) Zurich and his colleagues now show just how efficient a laser-cooling process can be [3] (Fig. 1). They demonstrate a laser-cooling method that uses a “spin-dependent force” to transfer motional entropy from the atom into the entropy of its internal degrees of freedom.