Toggle light / dark theme

Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was an English physicist who received the Nobel Prize in Physics in 1906 “in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases.” [ 1 ]

In 1897, Thomson showed that cathode rays were composed of previously unknown negatively charged particles (now called electrons), which he calculated must have bodies much smaller than atoms and a very large charge-to-mass ratio. [ 2 ] Thomson is also credited with finding the first evidence for isotopes of a stable (non-radioactive) element in 1913, as part of his exploration into the composition of canal rays (positive ions). His experiments to determine the nature of positively charged particles, with Francis William Aston, were the first use of mass spectrometry and led to the development of the mass spectrograph. [ 2 ] [ 3 ]

Thomson was awarded the 1906 Nobel Prize in Physics for his work on the conduction of electricity in gases. [ 4 ] Thomson was also a teacher, and seven of his students went on to win Nobel Prizes: Ernest Rutherford (Chemistry 1908), Lawrence Bragg (Physics 1915), Charles Barkla (Physics 1917), Francis Aston (Chemistry 1922), Charles Thomson Rees Wilson (Physics 1927), Owen Richardson (Physics 1928) and Edward Victor Appleton (Physics 1947). [ 5 ] Only Arnold Sommerfeld’s record of mentorship offers a comparable list of high-achieving students.

A new study led by researchers at the Earth-Life Science Institute (ELSI) at the Institute of Science, Tokyo, has uncovered a surprising role for calcium in shaping life’s earliest molecular structures. Their findings suggest that calcium ions can selectively influence how primitive polymers form, shedding light on a long-standing mystery: how life’s molecules came to prefer a single “handedness” (chirality).

The study is published in Proceedings of the National Academy of Sciences.

Like our left and right hands, many molecules exist in two mirror-image forms. Yet life on Earth has a striking preference: DNA’s sugars are right-handed, while proteins are built from left-handed . This phenomenon, called homochirality, is essential for life as we know it—but how it first emerged remains a major puzzle in origins of life research.

About 20% to 35% of the population suffers from chronic sleep disorders—and up to half of all people in older age. Moreover, almost every teenager or adult has experienced short-term sleep deprivation at some point. There are many reasons for not getting enough sleep, whether it be partying, a long day at work, caring for relatives, or simply whiling away time on smartphones.

In a recent meta-study, Jülich researchers have now been able to show that the involved in the short-term and long-term conditions differ significantly. The results of the study were published in the journal JAMA Psychiatry.

“Poor sleep is one of the most important—but changeable—risk factors for in adolescents and ,” says Jülich researcher and Privatdozent Dr. Masoud Tahmasian, who coordinated the study. In contrast, long-term pathological sleep disorders, such as insomnia, obstructive sleep apnea, narcolepsy, and short-term sleep deprivation, are located in different parts of the brain.

Researchers at Indiana University have shown that an artificial intelligence framework that employs sequential decision-making could reduce healthcare costs by over 50 percent while also improving patient outcomes by over 40 percent. New research from Indiana University has found that machine lea

University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch.

While exploring a digitally represented object through their artificially created sense of touch, users described the warm fur of a purring cat, the smooth rigid surface of a door key and the cool roundness of an apple. This research, a collaboration between Pitt and the University of Chicago, is published in Nature Communications.

In contrast to earlier experiments where artificial touch often felt like indistinct buzzing or tingling and didn’t vary from object to object, scientists gave BCI users control over the details of the electrical stimulation that creates tactile sensations, rather than making those decisions themselves. This key innovation allowed participants to recreate a sense of touch that felt intuitive to them.

In this episode, we return to the subject of existential risks, but with a focus on what actions can be taken to eliminate or reduce these risks.

Our guest is James Norris, who describes himself on his website as an existential safety advocate. The website lists four primary organizations which he leads: the International AI Governance Alliance, Upgradable, the Center for Existential Safety, and Survival Sanctuaries.

Previously, one of James’ many successful initiatives was Effective Altruism Global, the international conference series for effective altruists. He also spent some time as the organizer of a kind of sibling organization to London Futurists, namely Bay Area Futurists. He graduated from the University of Texas at Austin with a triple major in psychology, sociology, and philosophy, as well as with minors in too many subjects to mention.

Selected follow-ups:

• James Norris website (https://www.jamesnorris.org/)
• Upgrade your life & legacy (https://www.upgradable.org/) — Upgradable.
• The 7 Habits of Highly Effective People (https://www.franklincovey.com/courses… (Stephen Covey)
• Beneficial AI 2017 (https://futureoflife.org/event/bai-2017/) — Asilomar conference.
• \

In this talk, Klaus Mainzer explores the connections between the Leibniz’ Monadology, the structure and function of the brain, and recent developments in quantum computing. He reflects on the nature of complexity, intelligence, and the possibilities of quantum information technologies.