Toggle light / dark theme

Can Tesla REALLY Build Millions of Optimus Bots? ## Tesla is poised to revolutionize robotics and sustainable energy by leveraging its innovative manufacturing capabilities and vertical integration to produce millions of Optimus bots efficiently and cost-effectively ## Questions to inspire discussion ## Manufacturing and Production.

S low model count strategy benefit their production? A: Tesla s speed of innovation and ability to build millions of robots quickly gives them a key advantage in mass producing and scaling manufacturing for humanoid robots like Optimus. + s factory design strategies support rapid production scaling? A: Tesla## Cost and Efficiency.

S vertical integration impact their cost structure? A: Tesla s AI brain in-house, Tesla can avoid paying high margins to external suppliers like Nvidia for the training portion of the brain. +## Technology and Innovation.

S experience in other industries benefit Optimus development? A: Tesla s own supercomputer, Cortex, and AI training cluster are crucial for developing and training the Optimus bot## Quality and Reliability.

S manufacturing experience contribute to Optimus quality? A: Tesla## Market Strategy.

S focus on vehicle appeal relate to Optimus production? A: Tesla## Scaling and Demand.

Researchers at Michigan State University have refined an innovation that has the potential to improve safety, reduce severe injury and increase survival rates in situations ranging from car accidents, sports, law enforcement operations and more.

In 2020 and 2022, Weiyi Lu, an associate professor in MSU’s College of Engineering, developed a liquid nanofoam material made up of tiny holes surrounded by water that has been shown to protect the brain against traumatic injuries when used as a liner in football helmets. Now, MSU engineers and scientists have improved this technology to shield vital as well.

Falls, motor vehicle crashes and other kinds of collisions can cause blunt force and damage to bodily organs that can lead to life-threatening emergencies. These injuries are often the result of intense mechanical force or pressure that doesn’t penetrate the body like a cut, but causes serious damage to the body’s organs, including internal lacerations, ruptures, bleeding and organ failure.

Early diagnosis is crucial in disease prevention and treatment. Many diseases can be identified not just through physical signs and symptoms but also through changes at the cellular and molecular levels.

When it comes to a majority of chronic conditions, early detection, particularly at the cellular level, gives patients a better chance for successful treatment. Detection of early changes at the cellular level can also dramatically improve cancer outcomes.

It’s against this backdrop that a University of Rhode Island professor and a former Ph.D. graduate student looked at understanding the smallest changes between two similar cells.

New simulations suggest that habitable worlds could have begun forming only 200 million years after the big bang.

By Conor Feehly edited by Lee Billings

Scientists today are quite sure about how long our universe has existed: it’s been 13.8 billion years, give or take 59 million years, since the cosmos burst into being via the big bang. But they’re much less certain about a related question: When could life have first arisen, somewhere out there? Our solar system formed a mere 4.6 billion years ago, after two thirds of cosmic time had already elapsed, and life seems to have happened here almost as soon as Earth cooled down from its fiery birth to harbor oceans of liquid water.