Toggle light / dark theme

The aim of the following paper was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling.

— Pedrosa, et al.

Full text is available


Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography.

Electric sparks are used for welding, powering electronics, killing germs or for igniting the fuel in some car engines. Despite their usefulness, they are hard to control in open space—they split into chaotic branches that tend to go toward the closest metallic objects.

A recent study published in Science Advances uncovers a way of transporting electricity through air by . The level of control of the electric sparks allows guidance of the spark around obstacles, or guiding it to hit specific spots, even in non-conductive materials.

“We observed this phenomenon more than one year ago, then it took us months to control it, and even longer to find an explanation,” says Dr. Asier Marzo from the Public University of Navarre, lead researcher of the work.

The Sustainable Development Goals (SDGs) constitute the leading global framework for achieving human progress, economic prosperity, and planetary health. This framework emphasizes issues such as public health, education for all, gender equality, zero hunger, adoption of clean and renewable energy, and biodiversity conservation. Yet, despite this comprehensive agenda, questions remain about how different nations navigate their own paths toward these goals.

A recent study, published in Nature Communications provides insights into the trajectories of 166 countries as they have worked toward the SDGs over the past two decades.

By applying and the Product Space methodology, commonly used in the field of complexity economics, the researchers constructed the “SDG Space of Nations.” The elaborate model shows that countries do not simply march in lockstep toward sustainable development; instead, they cluster into distinctive groups, each with its own strengths and specializations, sometimes quite unexpected.

Scientists have developed a novel tool designed to protect and conserve coral reefs by providing them with an abundance of feeding opportunities.

The device, dubbed the Underwater Zooplankton Enhancement Light Array (UZELA), is an autonomous, programmable underwater light that works to draw in nearby zooplankton, microscopic organisms that coral feed on.

After testing the submersible on two species of coral native to Hawaii over six months, researchers found that UZELA could greatly enhance local zooplankton density and increase the feeding rates of both healthy and bleached coral. Importantly, providing coral with greater amounts of food makes them stronger and more likely to be resilient against certain environmental threats, like or .

Phase transitions, shifts between different states of matter, are widely explored physical phenomena. So far, these transitions have primarily been studied in three-dimensional (3D) and two-dimensional (2D) systems, yet theories suggest that they could also occur in some one-dimensional (1D) systems.

Researchers at the Duke Quantum Center and the University of Maryland recently reported the first observation of a finite-energy phase transition in a 1D chain of atoms simulated on a . Their paper, published in Nature Physics, introduces a promising approach to realizing finite-energy states in quantum simulation platforms, which opens new possibilities for the study of phase transitions in 1D systems.

The recent study is a that combined the work of theoretical physicists at the University of Maryland with that of at the Duke Quantum Center, where the was placed and where the experiments were carried out.

Researchers at the Ernst Strüngmann Institute in Frankfurt am Main, Germany, led by Wolf Singer, have made a new discovery in understanding fundamental brain processes. For the first time, the team has provided compelling evidence that the brain’s characteristic rhythmic patterns play a crucial role in information processing. While these oscillatory dynamics have long been observed in the brain, their purpose has remained mostly elusive until now.

The study has the potential to transform our understanding of brain activity. Using , the researchers show that recurrent networks with oscillating nodes demonstrate better performance compared to non-oscillating networks and replicate many experimentally observed phenomena.

These findings indicate that oscillatory dynamics are not just an epiphenomenon but are essential for efficient computation in the brain. The work is published in the journal Proceedings of the National Academy of Sciences.

The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.

With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.

The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.

Researchers at the Sainsbury Wellcome Center (SWC) at UCL have unveiled the precise brain mechanisms that enable animals to overcome instinctive fears. Published in Science, the study in mice could have implications for developing therapeutics for fear-related disorders such as phobias, anxiety and post-traumatic stress disorder (PTSD).

The research team, led by Dr. Sara Mederos and Professor Sonja Hofer, mapped out how the brain learns to suppress responses to perceived threats that prove harmless over time.

“Humans are born with instinctive reactions, such as responses to loud noises or fast-approaching objects,” explains Dr. Mederos, Research Fellow in the Hofer Lab at SWC.