Toggle light / dark theme

Ant Simulator: https://evolvecode.io/turmites/index.html.
Source code: https://github.com/MaxRobinsonTheGreat/turmites.
This is a video about Langton’s ants, turmites, and turing machines. On and on and on it goes, will it halt? Nobody knows.

~ LINKS ~
Pezzza’s Ant Sim: https://www.youtube.com/watch?v=hTHpEF_jcu4
Discord (see langtons-ants channel) https://discord.com/invite/GZWd2qySce.
Patreon: https://www.patreon.com/emergentgarden.
Ko-fi: https://ko-fi.com/emergentgarden.
Twitter: https://twitter.com/max_romana.
Bluesky: https://bsky.app/profile/emergentgarden.bsky.social.

~Timestamps~
(0:00) Langton’s Ants.
(3:32) Turmites.
(7:26) Emergent Patterns.
(10:13) Busy Beavers.
(11:56) Evolving Ants?

IN A NUTSHELL 🌞 Solar hydrogen generation could revolutionize clean energy by converting sunlight into hydrogen fuel. 💡 Researchers discovered that elevating electrolyte temperatures boosts bismuth-vanadate electrode activity by 40%. 🔍 The study provides new insights into how temperature affects solar water splitting and metal-oxide cell performance. 🚀 Advancements in this field may accelerate the

When placed under a powerful laser field (i.e., under strong-field ionization), electrons can temporarily cross the so-called quantum tunneling barrier, an energy barrier that they would typically be unable to overcome. This quantum mechanics phenomenon, known as quantum tunneling, has been the focus of numerous research studies.

Precisely measuring the exact time that an electron spends inside a barrier during strong-field ionization has so far proved challenging. In recent years, physicists have developed advanced experimental tools called attoclocks, which can measure the timing of ultrafast electron dynamics and could thus help to answer this long-standing research question.

Despite their potential for measuring the tunneling time of electrons, most attoclocks developed to date have had significant limitations and have been unable to yield reliable and conclusive measurements. In a recent paper published in Physical Review Letters, researchers at Wayne State University and Sorbonne University introduced a new attoclock technique that leverages the carrier-envelope phase (CEP), the offset between the peak of a laser’s pulse’s envelope and its oscillating field, to collect more precise tunneling time measurements.

Social engagement is a vital component of psychological and physical well-being linked to better health and a longer life, yet many older adults struggle to maintain relationships that support these outcomes.

New research from Nanyang Technological University in Singapore finds that changes in the brain’s intrinsic functional connectivity networks fully account for the decline in observed with aging.

Sociability is a trait encompassing communication effectiveness, emotional management, and social assertiveness, that tends to diminish with age. Older adults, particularly those who live alone, are at increased risk of isolation, limiting forms of social participation.

The LHCb experiment has taken a leap in precision physics at the Large Hadron Collider (LHC). In a new paper submitted to Physical Review Letters and currently available on the arXiv preprint server, the LHCb collaboration reports the first dedicated measurement of the Z boson mass at the LHC, using data from high-energy collisions between protons recorded in 2016 during the collider’s second run.

The Z boson is a massive, electrically neutral particle that mediates the weak nuclear force—one of nature’s fundamental forces. With a mass of about 91 billion electronvolts (GeV), it ranks among the heaviest known elementary particles.

Discovered at CERN more than 40 years ago, alongside the W boson, the Z boson played a central role in confirming the Standard Model of particle physics—a breakthrough that led to the 1984 Nobel Prize in Physics. Measuring its mass precisely remains essential for testing the Standard Model and searching for signs of new physics.

Researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences and their collaborators have synthesized a new isotope—protactinium-210—for the first time. It is the most neutron-deficient isotope of protactinium synthesized to date. Their findings are published in Nature Communications.

The is a quantum many-body system composed of protons and neutrons. Synthesizing and studying new nuclides is a frontier research topic in nuclear physics. Through this research, scientists can explore the limits of the existence of nuclei and deepen our understanding of the fundamental properties of matter.

Theoretical predictions suggest the existence of around 7,000 nuclides, yet only about 3,300 have been experimentally synthesized and observed so far.

A study led by Northeastern University professor Jonathan Peelle with researchers from across the globe has confirmed that people’s ability to detect background sounds varies from person to person, and is influenced by the noise that came before the sounds.

Peelle’s large-scale replication of a 10-year-old study involved 25 labs across 10 countries and included 149 participants. The findings are published in the journal Royal Society Open Science.

About a decade ago, a suggested that some people are better at picking out background sounds than others, and that this ability depends on the surrounding noise. But the study’s findings were based on data from just five participants, each completing a five-hour task.

Co-packaged optics (CPO) technology can integrate photonic integrated circuits (PICs) with electronic integrated circuits (EICs) like CPUs and GPUs on a single platform. This advanced technology has immense potential to improve data transmission efficiency within data centers and high-performance computing environments. CPO systems require a laser source for operation, which can be either integrated directly into the silicon photonic chips (integrated laser sources) or provided externally.

While integrated laser sources allow for dense CPO integration, ensuring consistent reliability can be challenging, which may affect overall system robustness. The use of external laser sources (ELS) in CPO, in comparison, offers improved system reliability.

Single-mode waveguides are crucial components of many PICs, where they help couple light from an external laser to the PIC or distribute optical signals within the system. They are cost-effective and mechanically flexible, besides being highly compatible with electrical circuits. Therefore, they show significant potential for use in CPO systems utilizing ELS.