Menu

Blog

Latest posts

Jun 22, 2024

Language is primarily a tool for communication rather than thought

Posted by in category: neuroscience

Evelina Fedorenko, Steven T. Piantadosi & Edward A. F. Gibson MIT June 2024 https://nature.com/articles/s41586-024-07522-w.

Language is a defining characteristic of our species, but the function, or functions, that it serves has…


Evidence from neuroscience and related fields suggests that language and thought processes operate in distinct networks in the human brain and that language is optimized for communication and not for complex thought.

Continue reading “Language is primarily a tool for communication rather than thought” »

Jun 22, 2024

China reveals fusion tech breakthrough

Posted by in categories: nuclear energy, singularity

A commercial ‘artificial sun’ has achieved its first plasma discharge, the developer says © Getty Images / mesh cube.

The Chinese privately run fusion company Energy Singularity has built the world’s first fully high-temperature superconducting tokamak, and used it to produce plasma, state media outlets have reported, citing the firm.

The creation of the device, dubbed HH70 and located in Shanghai, is seen as a major step in the development of fusion technology to potentially generate clean energy.

Jun 22, 2024

Neutrino mixer

Posted by in categories: nuclear energy, particle physics, space

Why are neutrinos so light?


Did you know that every second more than 100 trillion tiny particles called neutrinos pass through your body without causing any harm? These mysterious particles are produced abundantly throughout the universe in events like nuclear reactions in the sun, radioactive decays in the Earth’s crust, and in high-energy collisions in space. In particular, these subatomic particles play a crucial role in the explosive deaths of stars known as supernovae, where they act as the driving force behind the explosion. Despite their abundance in the universe, they are incredibly difficult to detect directly in experiments since they pass right through any matter and only interact extremely rarely. At the LHC, their existence can only be inferred indirectly by summing up the energy of all other particles produced from the proton collisions and looking for missing energy that has been carried away by the neutrino, which escaped the experiment undetected.

Neutrinos are a type of fundamental particle known as a lepton and they are electrically neutral. They stand out among fundamental particles because of their peculiar characteristics. Not only do they interact exceptionally rarely, but they also possess a minuscule mass, approximately 500,000 times lighter than that of an electron. One possible explanation for the smallness of their mass is given by the “seesaw” mechanism. According to this theory, there exist additional new fundamental particles that are electrically neutral. The mechanism postulates that the masses of these new particles, known as “heavy neutral leptons” (HNLs), are mathematically linked to those of the normal neutrinos, like two sides of a seesaw. The theory also predicts that the HNLs will “mix” with their known cousins, neutrinos. This means that a neutrino, produced in an LHC collision, can change into an HNL, and the HNL can then decay back into known particles that the LHC experiments can detect!

Continue reading “Neutrino mixer” »

Jun 22, 2024

Intel’s Millikelvin Quantum Research Control Chip Provides Denser Integration with Qubits

Posted by in categories: computing, quantum physics

Intel debuts new chip focused on addressing quantum computing’s wiring bottleneck.

Intel’s millikelvin quantum research control chip, code-named Pando Tree, establishes Intel as the first semiconductor manufacturer to demonstrate the distribution of cryogenic silicon spin qubit control electronics…


Sushil Subramanian is a research scientist at Intel where he works on integrated circuits and systems for qubit control in quantum computers. Co-author Stefano Pellerano is a senior principal engineer and lab director of the RF and Mixed-Signal Circuits Lab where he leads the research and development effort on cryogenic electronics for qubit control.

Continue reading “Intel’s Millikelvin Quantum Research Control Chip Provides Denser Integration with Qubits” »

Jun 22, 2024

Controlling electronics with light: Ultrafast lasers manipulate magnetite’s structure

Posted by in categories: electronics, materials

Researchers at EPFL have discovered that by shining different wavelengths (colors) of light on a material called magnetite, they can change its state, e.g., making it more or less conducive to electricity. The discovery could lead to new ways of designing new materials for electronics such as memory storage, sensors, and other devices that rely on fast and efficient material responses.

Jun 22, 2024

Universal and High-Fidelity Resolution Extending for Fluorescence Microscopy Using a Single-Training Physics-Informed Sparse Neural Network

Posted by in categories: information science, robotics/AI

As a supplement to optical super-resolution microscopy techniques, computational super-resolution methods have demonstrated remarkable results in alleviating the spatiotemporal imaging trade-off. However, they commonly suffer from low structural fidelity and universality. Therefore, we herein propose a deep-physics-informed sparsity framework designed holistically to synergize the strengths of physical imaging models (image blurring processes), prior knowledge (continuity and sparsity constraints), a back-end optimization algorithm (image deblurring), and deep learning (an unsupervised neural network). Owing to the utilization of a multipronged learning strategy, the trained network can be applied to a variety of imaging modalities and samples to enhance the physical resolution by a factor of at least 1.67 without requiring additional training or parameter tuning.

Jun 22, 2024

Physicists propose time crystal-based circuit board to reduce quantum computing errors

Posted by in categories: computing, quantum physics

A trio of physicists, two with Uniwersytet Jagielloński in Poland and one with Swinburne University of Technology in Australia, are proposing the use of temporal printed circuit boards made using time crystals as a way to solve error problems on quantum computers. Krzysztof Giergiel, Krzysztof Sacha and Peter Hannaford have written a paper describing their ideas, which is currently available on the arXiv preprint server.

Jun 22, 2024

Key mechanism in nuclear reaction dynamics promises advances in nuclear physics

Posted by in category: physics

Researchers have made significant progress in understanding the transfer of neutrons in weakly bound nuclei. The experiment, performed at Legnaro National Laboratory, focused on the one-neutron stripping process in reactions involving lithium-6 and bismuth-209. The work is published in the journal Nuclear Science and Techniques.

Jun 22, 2024

Researchers achieve practical 3D tracking at record-breaking speeds

Posted by in categories: robotics/AI, security, surveillance

Researchers have developed a new 3D method that can be used to track fast-moving objects at unprecedented high speeds. The real-time tracking approach, which is based on single-pixel imaging, could be used to improve autonomous driving, industrial inspection and security surveillance systems.

Jun 22, 2024

Researchers stabilize photon interference in optical chips using topological wave propagation

Posted by in category: computing

A collaboration of Professor Szameit’s research group at the University of Rostock with researchers from the Albert-Ludwigs-Universität Freiburg has succeeded in stabilizing the interference of two photons in optical chips with the concept of topologically protected wave propagation. The research results are published in Science.

Page 1 of 11,33812345678Last