Toggle light / dark theme

Scientists have made liquid carbon in a lab for the first time, Interesting Engineering reported.

Liquid carbon was thought to be impossible to study under normal conditions. The material only exists for billionths of a second under extreme pressure and temperatures of about 4,500 degrees Celsius, making this record-breaking technology limitless in its potential.

Nuclear fusion, combining light atomic nuclei to release massive amounts of clean energy, has long been considered the holy grail of power generation. Fusion could change society by providing unlimited electricity without radioactive waste, helping cities, individuals, and companies save money compared to resource-intensive traditional energy methods.

A series of studies sheds light on the origins and characteristics of intermediate-mass black holes. In the world of black holes, there are generally three size categories: stellar-mass black holes (about five to 50 times the mass of the sun), supermassive black holes (millions to billions of times the mass of the sun), and intermediate-mass black holes with masses somewhere in between.

While we know that intermediate-mass black holes should exist, little is known about their origins or characteristics – they are considered the rare “missing links” in black hole evolution.

However, four new studies have shed new light on the mystery. The research was led by a team in the lab of Assistant Professor of Physics and Astronomy Karan Jani, who also serves as the founding director of the Vanderbilt Lunar Labs Initiative. The work was funded by the National Science Foundation and the Vanderbilt Office of the Vice Provost for Research and Innovation.

ChatGPT-maker OpenAI has enlisted the legendary designer behind the iPhone to create an irresistible gadget for using generative artificial intelligence (AI).

The ability to engage digital assistants as easily as speaking with friends is being built into eyewear, speakers, computers and smartphones, but some argue that the Age of AI calls for a transformational new gizmo.

“The products that we’re using to deliver and connect us to unimaginable technology are decades old,” former Apple chief design officer Jony Ive said when his alliance with OpenAI was announced.

The University of California San Diego is part of a new research partnership led by San Diego-based General Atomics that was recently awarded funding by the U.S. Department of Energy (DOE). The project, called the Target Injector Nexus for Experimental Development (TINEX), aims to overcome critical obstacles in developing and scaling up inertial fusion power plants.

It is one of six awards, collectively totalling $107 million, made by the DOE as part of the Fusion Innovative Research Engine (FIRE) Collaboratives.

“The TINEX project will be important for our collective efforts to make inertial fusion energy practical,” said mechanical engineering professor Javier E. Garay, director of the Fusion Engineering Institute at the UC San Diego Jacobs School of Engineering.

A new cancer treatment discovered by the University of California San Diego Sanford Stem Cell Institute (SSCI) and developed by Aspera Biomedicines will undergo testing in outer space this spring — this as researchers prepare to launch a clinical trial of the drug on Earth.

Rebecsinib, an investigational cancer drug slated to begin a Phase 1 clinical trial this year for patients with high-risk myelofibrosis or secondary acute myeloid leukemia, will be tested aboard the International Space Station (ISS) on four of the deadliest cancer types: ovarian cancer, metastatic breast cancer, acute myeloid leukemia and glioblastoma multiforme.

June 12, 2025


Rebecsinib, a new cancer treatment discovered by UC San Diego Sanford Stem Cell Institute will undergo testing in outer space on an additional four of the deadliest cancer types: ovarian cancer, metastatic breast cancer, acute myeloid leukemia and glioblastoma multiforme.