Jakub Pachocki, OpenAI’s chief scientist since 2024, believes artificial intelligence models will soon be capable of producing original research and making measurable economic impacts. In a conversation with Nature, Pachocki outlined how he sees the field evolving — and how OpenAI plans to balance innovation with safety concerns.
Pachocki, who joined OpenAI in 2017 after a career in theoretical computer science and competitive programming, now leads the firm’s development of its most advanced AI systems. These systems are designed to tackle complex tasks across science, mathematics, and engineering, moving far beyond the chatbot functions that made ChatGPT a household name in 2022.
The world’s only net-positive fusion experiment has been steadily ramping up the amount of power it produces, TechCrunch has learned.
In recent attempts, the team at the U.S. Department of Energy’s National Ignition Facility (NIF) increased the yield of the experiment, first to 5.2 megajoules and then to 8.6 megajoules, according to a source with knowledge of the experiment.
The new results are significant improvements over the historic experiment in 2022, which was the first controlled fusion reaction to generate more energy than it consumed.
Researchers at the University of Alabama in the United States have used duct tape from a store to create a triboelectric nanogenerator capable of collect electricity from the human body and the environment.
Their development is capable of powering small devices such as biosensors by converting mechanical energy from friction and movement into electricity. The generator is made of metallized films polyethylene terephthalate, which act as electrodes, and layers of adhesive tape.
The developers emphasize that power generation occurs through interaction polypropylene and of the acrylic adhesive layer when they are pressed and released. At the same time, due to the weak intermolecular interaction (Van der Waals forces) on the borders of the atomic-sized gaps.
Researchers have now ‘heard’ the echo of cyclones whirling ocean waters from all the way on the other side of our planet.
Microseismic waves generated by interactions between the ocean and Earth’s crust might be able to help us peer into otherwise hidden parts of Earth’s geological structure, such as regions left shrouded by a scarcity of high-energy earthquakes in the North Atlantic.
“Our research uses these microseismic phenomena as an alternative data source to study the Earth’s structure beneath Australia,” says seismologist Hrvoje Tkalčić from Australian National University.
Researchers in Australia are working on a way to lower the cost of producing solar thermal energy by as much as 40% with the help of shatterproof rear-view mirrors originally designed for cars.
That could be huge for agriculture and industrial facilities which need large amounts of heat for large-scale processes at temperatures between 212 — 754 °F (100 — 400 °C). That addresses food production, drying crops, grain and pulse drying, sterilizing soil and treating wastewater on farms; industrial applications include producing chemicals, making paper, desalinating water, and dyeing textiles.
A quick refresher in case you’re out of the loop: solar thermal energy and conventional solar energy (photovoltaic) systems both harvest sunlight, but they work in fundamentally different ways. Solar thermal setups capture the Sun’s heat rather than its light, use reflectors to concentrate sunlight onto a receiver, and convert solar radiation directly into heat energy. This heat can be used directly for heating buildings, water, or the aforementioned industrial processes.
Elon Musk recently emphasized that Colossus 2 will be the first Gigawatt AI training supercluster, highlighting xAI’s growing infrastructure ambitions as he reshared a post detailing the deployment of 168 Tesla Inc. Megapacks to power the new data center.
The qualia problem of perception is simply pointing out that the way we perceive the world is in terms of subjective qualities rather than numerical quantities. For example, we perceive the color of light in the things we see rather than the frequency of light wave vibrations or wavelengths, just as we perceive the quality of the sounds we hear rather than the frequency of sound wave vibrations. Another example is emotional qualities, like the perception of pleasure and pain and the perception of other emotional qualities, like the emotional qualities that color the perception of the emotional body feelings we perceive with emotional expressions of fear and desire. There is no possible way to understand the perception of these emotional qualities, just as there is no way to understand the perception of the colors we see or the qualities of the sounds we hear, in terms of the neuronal firing rates of neurons in the brain or other nervous systems. The frequency of wave vibrations and the neuronal firing rates of neurons are both examples of quantities. The problem is we do not perceive things in terms of numerical quantities, but rather in terms of subjective qualities.
All our physical theories are formulated in terms of numerical quantities, not in terms of subjective qualities. For example, in ordinary quantum theory or in quantum field theory, we speak of the frequency of light wave vibrations or the wavelength of a light wave in terms of a quantum particle called the photon. A photon or light wave is characterized by the numerical quantities of frequency and wavelength. When we formulate the nature of a light wave or photon in quantum theory in terms of Maxwell’s equations for the electromagnetic field, we can only describe numerical quantities. In ordinary quantum theory and quantum field theory, the electromagnetic field is the quantum wave-function, ψ(x, t), that specifies the quantum probability that the point particle called the photon can be measured at a position x in space at a moment t in time. That quantum probability is specified in terms of the frequency and wavelength that characterizes the wave-function for the photon.