Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

CRISPR breakthrough reverses chemotherapy resistance in lung cancer

In a major step forward for cancer care, researchers at ChristianaCare’s Gene Editing Institute have shown that disabling the NRF2 gene with CRISPR technology can reverse chemotherapy resistance in lung cancer. The approach restores drug sensitivity and slows tumor growth. The findings are published in the journal Molecular Therapy Oncology.

This breakthrough stems from more than a decade of research by the Gene Editing Institute into the NRF2 gene, a known driver of treatment resistance. The results were consistent across multiple in vitro studies using human lung cancer cell lines and in vivo animal models.

“We’ve seen compelling evidence at every stage of research,” said Kelly Banas, Ph.D., lead author of the study and associate director of research at the Gene Editing Institute. “It’s a strong foundation for taking the next step toward clinical trials.”

Gene ‘switch’ reverses Alzheimer’s risk in experimental model

University of Kentucky researchers have developed a new experimental model that could point the way toward more effective Alzheimer’s disease treatments by targeting one of the brain’s most important genes for risk and resilience.

The study, published in Nature Neuroscience, focuses on apolipoprotein E (APOE), a gene long known to play a major role in Alzheimer’s disease. The team created a first-of-its-kind mouse model that allows scientists to “flip a switch,” changing the high-risk version of the gene (APOE4) to the protective form (APOE2) in adult animals.

Unprecedented Perlmutter Simulation Details Quantum Chip

Designing quantum chips incorporates traditional microwave engineering in addition to advanced low-temperature physics. This makes a classical electromagnetic modeling tool like ARTEMIS, which was developed as part of the DOE’s Exascale Computing Project initiative, a natural choice for this type of modeling.

A large simulation for a tiny chip

Not every quantum chip simulation calls for so much computing capacity, but modeling the miniscule details of this tiny, extremely complex chip required nearly all of Perlmutter’s power. The researchers used almost all of its 7,168 NVIDIA GPUs over a period of 24 hours to capture the structure and function of a multi-layered chip measuring just 10 millimeters square and 0.3 millimeters thick, with etchings just one micron wide.

[Announcement] Congratulations to the 2025 Kyoto Prize Laureate in Advanced Technology (Information Science), Shun’ichi Amari

At the award ceremony held on Monday, November 10, 2025, at the Kyoto International Conference Center, Her Imperial Highness Princess Takamado graced the occasion, joined by ambassadors, consuls general, and numerous distinguished guests from Japan and abroad to celebrate the laureates’ achievements. Each laureate was presented with a diploma, the Kyoto Prize medal, and a monetary award of 100 million yen. https://www.kyotoprize.org/en/laureates/shun-ichi_amari/

We extend our heartfelt congratulations to Professor Shun’ichi Amari on receiving the Kyoto Prize. Below is a list of his works — 30 references published in journals including a research survey article, along with selected book chapters — published by Springer Nature over the past 50 years. These materials are available for free viewing and download until December 14, 2025.

Advancing Drug Discovery with Artificial Intelligence

Lipid nanoparticles (LNPs) have emerged as popular vehicles for delivering various types of drugs such as mRNA and gene therapy. While these nanoparticles are effective in transporting therapeutic payloads, their components can interact with the human body, potentially causing genotoxicity — damage to the recipient’s genetic material that may lead to inheritable mutations or cancer. In this webinar brought to you by Inotiv, Shambhu Roy will discuss how to test the genotoxicity of LNP-based therapeutics to ensure the safety of these innovative drug delivery systems.

We’ll chat about these topics.

• Understanding the key components of LNP delivery systems • Genotoxicity testing for LNP-based drugs during preclinical safety assessment • Selecting the appropriate assays to meet regulatory requirements.

/* */