Toggle light / dark theme

In IDB, macrophages, a type of immune cell begins producing excessive levels of pro-inflammatory cytokines. These proteins then stick to macrophage receptors which triggers them to produce even more of this inflammatory protein. But UC San Diego researchers can break that cycle with a microrobot.

In previous experiments, UC San Diego researchers delivered drugs with microrobots, most notably in the lungs, and succeeded in minimizing the drug’s side effects. For the IBD study, however, they didn’t even need to use a drug.

Using body parts from simple animals in robotics is not as controversial. But it’s still important to consider the impact on these living creatures. It may seem that bugs and jellyfish and mollusks aren’t capable of caring about how we use their bodies. But what if we’re wrong about that? Some researchers are finding that such creatures might have more awareness and feelings than expected.

Living robots also interact with the environment. What if a jellyfish outfitted with electronics got eaten? Xu is hoping to develop biodegradable electronics that wouldn’t harm other animals or pollute the ocean.

Biohybrid robots blur the line between machine and living thing. The jellyfish cyborgs are obviously still alive. But most biohybrids don’t really fit into one category or the other. Shin says of her heart-cell-covered bot: “it’s not a creature.” But it’s not a typical robot, either.

Scientists have long been racking their brains for ways to treat Alzheimer’s disease, the most common type of dementia.

Turns out that the answer may lie within our own brains. Researchers from Northwestern University suggest that enhancing the brain’s immune cells may better equip them to clear out harmful clumps of the toxic protein amyloid beta, a hallmark of Alzheimer’s.

“Our study is highly novel because we had the rare opportunity to analyze one of the largest post-mortem brain cohorts of Alzheimer’s patients treated with amyloid-targeting drugs — similar to those now approved by the FDA for Alzheimer’s disease,” lead author Lynn van Olst said.

Interstellar material has been discovered in our solar system, but researchers continue to hunt for where it came from and how it got here. A new study led by Western astrophysicists Cole Gregg and Paul Wiegert recommends Alpha Centauri—the next closest solar system to ours—is a great place to start, highlighting how and why it’s a prime target.

The findings were published March 6 in The Planetary Science Journal.

Interstellar objects are astronomical material, like asteroids or comets, not gravitationally bound to a star. They can come from other solar systems and be thrown into interstellar space by collisions or be slingshotted by a planet or star’s gravity.