Toggle light / dark theme

In a study published in the Proceedings of the National Academy of Sciences (PNAS), the researchers detail their discoveries about why the brain tumor glioblastoma is so aggressive. Their findings center on ZIP4, a protein that transports zinc throughout the body and sets off a cascade of events that drive tumor growth.

About half of all malignant brain tumors are glioblastomas, the deadliest form of brain cancer with a median survival rate of 14 months.

“Surgery for glioblastoma is very challenging, and patients almost always experience a relapse,” said the study’s senior author. “By better understanding why these brain tumors are so aggressive, we hope to open up paths for new treatments.”

Is Gemini 2.5 Pro the AI breakthrough that will redefine machine intelligence? Google’s latest innovation promises to solve one of AI’s biggest hurdles: true reasoning. Unlike chatbots that regurgitate data, Gemini 2.5 Pro mimics human-like logic, connecting concepts, spotting flaws, and making decisions with unprecedented depth. This isn’t an upgrade—it’s a revolution in how machines think.

What makes Gemini 2.5 Pro unique? Built on a hybrid neural-symbolic architecture, it merges brute-force data processing with structured reasoning frameworks. Early tests show it outperforms GPT-4 and Claude 3 in complex tasks like legal analysis, medical diagnostics, and ethical dilemma navigation. We’ll break down its secret sauce: adaptive learning loops, context-aware problem-solving, and self-correcting logic that learns from mistakes in real time.

How will this impact you? Developers can build AI that understands instead of just parroting, businesses can automate high-stakes decisions, and educators might finally have a tool to teach critical thinking. But there’s a catch: Gemini 2.5 Pro’s \.

❤️ Check out Lambda here and sign up for their GPU Cloud: https://lambda.ai/papers.

Guide for using DeepSeek on Lambda:
https://docs.lambdalabs.com/education/large-language-models/…dium=video.

📝 AlphaEvolve: https://deepmind.google/discover/blog/alphaevolve-a-gemini-p…lgorithms/
📝 My genetic algorithm for the Mona Lisa: https://users.cg.tuwien.ac.at/zsolnai/gfx/mona_lisa_parallel_genetic_algorithm/

📝 My paper on simulations that look almost like reality is available for free here:
https://rdcu.be/cWPfD

Or this is the orig. Nature Physics link with clickable citations:
https://www.nature.com/articles/s41567-022-01788-5

🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible:

Deepnight’s Algorithm-intensified image enhancement for NIGHT VISION

Instead of using expensive image-intensification tubes, this startup is using ordinary low light sensors coupled with special computer algorithms to produce night vision. This will bring night vision to the general public. At present, even a generation 2 monocular costs around $2000, while a generation 3 device costs around $3500. The new system has the added advantage of being in color, instead of monochromatic. Hopefully, this will pan out, and change the situation for Astronomy enthusiasts worldwide.


Lucas Young, CEO of Deepnight, showcases how their AI technology transforms a standard camera into an affordable and effective night vision device in extremely dark environments.

Brain-computer interfaces are already letting people with paralysis control computers and communicate their needs, and will soon enable them to manipulate prosthetic limbs without moving a muscle.

The year ahead is pivotal for the companies behind this technology.

Fewer than 100 people to date have had brain-computer interfaces permanently installed. In the next 12 months, that number will more than double, provided the companies with new FDA experimental-use approval meet their goals in clinical trials. Apple this week announced its intention to allow these implants to control iPhones and other products.