Toggle light / dark theme

Supported by the U.S. National Science Foundation, physicists have revealed the presence of a previously unobserved type of subatomic phenomenon called a fractional exciton. Their findings confirm theoretical predictions of a quasiparticle with unique quantum properties that behaves as though it is made of equal fractions of opposite electric charges bound together by mutual attraction.

The discovery was supported by NSF through multiple grants and laboratory work performed at the NSF National High Magnetic Field Laboratory in Tallahassee, Florida. The results are published in Nature and show potential for developing new ways to improve how information is stored and manipulated at the quantum level, which could lead to faster and more reliable quantum computers.

“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” says Jia Li, leader of the research team and associate professor of physics at Brown University. “The most exciting part is that this discovery unlocks a range of novel quantum phases of matter, presenting a new frontier for future research, deepening our understanding of fundamental physics and even opening up new possibilities in quantum computation.”

A multidisciplinary clinical team led by Professor Bernat Soria from the Institute of Bioengineering at the Miguel Hernández University of Elche (UMH, Spain) has developed a new method to deliver cell therapies in patients on extracorporeal membrane oxygenation (ECMO), a life support system used in cases of severe lung failure.

The advance has been published in Stem Cell Research & Therapy. The team has opted not to patent the technique in order to encourage its use in public health systems once further clinical testing is completed.

The method—named CIBA, for “Consecutive Intrabronchial Administration”—enables the delivery of stem-cell-based treatments directly into the alveoli of critically ill patients who cannot receive standard intravenous cell therapy due to the ECMO system’s constraints.

American composer Alvin Lucier was well-known for his experimental works that tested the boundaries of music and art. A longtime professor at Wesleyan University (before retiring in 2011), Alvin passed away in 2021 at the age of 90. However, that wasn’t the end of his lifelong musical odyssey.

Earlier this month, at the Art Gallery of Western Australia, a new art installation titled Revivification used Lucier’s “brain matter”—hooked up to an electrode mesh connected to twenty large brass plates—to create electrical signals that triggered a mallet to strike the varying plates, creating a kind of post-mortem musical piece. Conceptualized in collaboration with Lucier himself before his death, the artists solicited the help of researchers from Harvard Medical School, who grew a mini-brain from Lucier’s white blood cells. The team created stem cells from these white blood cells, and due to their pluripotency, the cells developed into cerebral organoids somewhat similar to developing human brains.

There’s a sensation that you experience—near a plane taking off or a speaker bank at a concert—from a sound so total that you feel it in your very being. When this happens, not only do your brain and ears perceive it, but your cells may also.

Technically speaking, is a simple phenomenon, consisting of compressional mechanical waves transmitted through substances which exist universally in the non-equilibrated material world. Sound is also a vital source of environmental information for living beings, while its capacity to induce physiological responses at the cell level is only just beginning to be understood.

Following on from previous work from 2018, a team of researchers at Kyoto University have been inspired by research in mechanobiology and body-conducted sound—the sound environment in —indicating that transmitted by sound may be sufficient to induce cellular responses.

Scientists in Korea achieved the first experimental realization of bound states in the continuum in a single resonator, opening doors to ultra-efficient wave control for future tech. A research team from POSTECH (Pohang University of Science and Technology) and Jeonbuk National University has ach

Physicists at Harvard have developed a powerful new laser-on-a-chip that emits bright pulses in the mid-infrared spectrum – an elusive and highly useful light range for detecting gases and enabling new spectroscopic tools.

The device, which packs capabilities of much larger systems into a tiny chip, doesn’t need any external components. It merges breakthrough photonic design with quantum cascade laser tech and could soon revolutionize environmental monitoring and medical diagnostics by detecting thousands of light frequencies in one go.

Breakthrough in compact mid-infrared laser technology.