Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The body’s molecular mail revealed: Scientists decode blood’s hidden messengers

Every second, trillions of tiny parcels travel through your bloodstream—carrying vital information between your body’s cells. Now, scientists at the Baker Heart and Diabetes Institute have opened this molecular mail for the first time, revealing its contents in astonishing detail.

In research published in Nature Cell Biology, Professor David W. Greening and Dr. Alin Rai have mapped the complete molecular blueprint of extracellular vesicles (EVs)—nanosized particles in blood that act as the body’s secret messengers.

For decades, researchers have known that EVs exist, ferrying proteins, fats, and genetic material that mirror the health of their cells of origin. But because blood is a complex mixture—packed with cholesterol, antibodies, and millions of other particles—isolating EVs has long been one of science’s toughest challenges.

Humans may be born with preconfigured brains that help us understand the world

In a fascinating new study, scientists used pieces of human brain tissue to demonstrate that neural circuits produce electrical patterns very early in the development process, even before senses are active.

These experiments at the University of California, Santa Cruz (UCSC) and other labs suggest that the brain comes with built-in timing rules for thoughts.

Asteroid loaded with amino acids offers new clues about the origin of life on Earth

One of the most elegant theories about the origins of life on our planet is that it was kick-started by a delivery from outer space. This idea suggests that prebiotic molecules—the building blocks of life—were transported here by asteroids or other celestial bodies. While these molecules have been found in meteorite samples that have crash-landed on Earth, the findings have been complicated by the possibility of contamination from our environment.

But now these building blocks have been found on an ancient asteroid untouched by Earth’s environment. That asteroid is called Bennu, a primitive object that hasn’t changed much since the birth of our solar system around 4.6 billion years ago. It last swung by our neighborhood in 2020, when a NASA spacecraft landed on its surface, scooped up some samples, and brought them back home.

Probing the quantum nature of black holes through entropy

In a study published in Physical Review Letters, physicists have demonstrated that black holes satisfy the third law of thermodynamics, which states that entropy remains positive and vanishes at extremely low temperatures, just like ordinary quantum systems. The finding provides strong evidence that black holes possess isolated ground states, a hallmark of quantum mechanical behavior.

Understanding gravity’s quantum behavior is among the biggest open questions facing modern physics. Black holes are used as laboratories for investigating quantum gravity, particularly at low temperatures where quantum effects become visible.

Prior calculations showed that black hole entropy might become negative at low temperatures, a result that appeared physically puzzling. In this work, researchers addressed the paradox by incorporating wormhole effects in the two-dimensional Jackiw-Teitelboim (JT) gravity model.

Humans and artificial neural networks exhibit some similar patterns during learning

Past psychology and behavioral science studies have identified various ways in which people’s acquisition of new knowledge can be disrupted. One of these, known as interference, occurs when humans are learning new information and this makes it harder for them to correctly recall knowledge that they had acquired earlier.

Interestingly, a similar tendency was also observed in artificial neural networks (ANNs), computational models inspired by biological neurons and the connections between them. In ANNs, interference can manifest as so-called catastrophic forgetting, a process via which models “unlearn” specific skills or information after they are trained on a new task.

In some other instances, knowledge acquired in the past can instead help humans or ANNs to learn how to complete a new task. This phenomenon, known as “transfer,” entails the application of existing knowledge of skills to a novel task or problem.

Rapid X-ray pulses enable 100-fold efficiency boost for photoionization

Speed matters. When an X-ray photon excites an atom or ion, making a core electron jump onto a higher energy level, a short-lived window of opportunity opens. For just a few femtoseconds, before an electron fills the void in the lower energy level, a second photon has the chance to be absorbed by another core electron, creating a doubly excited state.

Using 5,000 intense X-ray flashes per second, generated by the European XFEL, an international team of scientists has investigated such double core-hole states in highly ionized krypton, using photons that all had nearly the same energy or color.

For their experiments, scientists from European XFEL and the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg as well as six other institutions across Germany, Italy, Portugal, and the United States, used highly charged krypton, Kr26+, lacking all but ten of its electrons.

Hepatitis D Virus Classified as Carcinogenic: Implications

The International Agency for Research on Cancer (IARC) of the World Health Organization has classified hepatitis D virus (HDV) as carcinogenic, citing sufficient evidence and placing it alongside hepatitis B virus (HBV) and hepatitis C virus (HCV) as a cause of hepatocellular carcinoma (HCC).


WHO’s classification of hepatitis D virus as carcinogenic raises urgent questions for vaccination, screening, and treatment strategies worldwide.

Why important genes ‘go quiet’ as we get older

The human gut renews itself faster than any other tissue: every few days, new cells are created from specialized stem cells. However, as we get older, epigenetic changes build up in these stem cells. These are chemical markers on the DNA that act like switches, determining which genes remain active.

The study, recently published in Nature Aging, was conducted by an international team led by Prof. Francesco Neri from the University of Turin, Italy, and shows that changes in the gut do not occur randomly. Rather, a specific pattern develops over the course of aging, which the researchers refer to as ACCA (Aging-and Colon Cancer-Associated) drift. “We observe an epigenetic pattern that becomes increasingly apparent with age,” explains Prof. Neri, former group leader at the Leibniz Institute on Aging—Fritz Lipmann Institute in Jena.

Genes that maintain the balance in healthy tissue are particularly affected, including those that control the renewal of the intestinal epithelium via the Wnt signaling pathway. The changes described as “drifting” can be detected not only in the aging gut, but also in almost all colon cancer samples examined. This suggests that the aging of stem cells creates an environment that promotes the development of cancer.

/* */