Toggle light / dark theme

Fast radio bursts are brief and brilliant explosions of radio waves emitted by extremely compact objects such as neutron stars and possibly black holes. These fleeting fireworks last for just a thousandth of a second and can carry an enormous amount of energy—enough to briefly outshine entire galaxies.

Since the first fast radio burst (FRB) was discovered in 2007, astronomers have detected thousands of FRBs, whose locations range from within our own galaxy to as far as 8 billion light-years away. Exactly how these cosmic radio flares are launched is a highly contested unknown.

Now, astronomers at MIT have pinned down the origins of at least one fast radio burst using a novel technique that could do the same for other FRBs. In their new study, appearing in the journal Nature, the team focused on FRB 20221022A—a previously discovered fast radio burst that was detected from a galaxy about 200 million light-years away.

A research team from DGIST’s (President Kunwoo Lee) Division of Energy & Environmental Technology, led by Principal Researcher Kim Jae-hyun, has developed a lithium metal battery using a “triple-layer solid polymer electrolyte” that offers greatly enhanced fire safety and an extended lifespan. This research holds promise for diverse applications, including in electric vehicles and large-scale energy storage systems.

Conventional solid polymer electrolyte batteries perform poorly due to structural limitations which hinder an optimal electrode contact.

This could not eliminate the issue of “dendrites” either, where lithium grows in tree-like structures during repeated charging and discharging cycles.

Extra dimensions—beyond length, width, height—seem like the stuff of science fiction. What would extra dimensions be like? Is time the fourth dimension? Does string theory require ten or eleven dimensions? Could deep reality be so strange? And, anyway, why would we care?

Make a tax-deductible donation to Closer To Truth to help us continue exploring the world’s deepest questions without paywalls: https://shorturl.at/OnyRq.

Lawrence Maxwell Krauss is a Canadian-American theoretical physicist and cosmologist who taught at Arizona State University, Yale University, and Case Western Reserve University. He founded ASU’s Origins Project in 2008 to investigate fundamental questions about the universe and served as the project’s director.

Show your support for the show with a purchase from the Closer To Truth merch store: https://bit.ly/3P2ogje.

A leading neuroscientist claims that a pong-playing clump of about a million neurons is “sentient”. What does that mean? Why did Cortical Labs teach a lab-grown brain to play pong? To study biological self-organization at the root of life, intelligence, and consciousness. And, according to their website, “to see what happens.” What’s next for biocomputing?

CORRECTIONS/Clarifications:
- The cells aren’t directly frozen in liquid nitrogen — they are put in vials and stored in liquid nitrogen (and you can’t buy them legally without credentials) https://www.atcc.org/products/pcs-201-010
- The sentience of some invertebrates, like octopuses, is generally agreed upon. Prominent scientists affirmed non-human consciousness in the Cambridge Declaration on Consciousness: https://philiplow.foundation/consciousness/
- The “Neanderthal neurons” are human cells that are “Neanderthalized” using genetic engineering: https://www.youtube.com/watch?v=5FBxnkzI9HU

DISCLAIMER: The explanations in this video are those proposed by the researchers, or my opinion. We are far from understanding how brains, or even neurons, work. The free energy principle is one of many potential explanations.

Support the channel: https://www.patreon.com/IhmCurious.

NAD, a vital molecule for cellular energy and DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Link :


Rare minerals discovered in Japan could be a game changer for their economic security.

A group of researchers in Japan uncovered a cache of rare minerals in the seabed around Minami-Tori-shima island harbours.

The Nippon Foundation and the University of Tokyo conducted a survey which discovered around 610,000 metric tons of cobalt and 740,000 metric tons of nickel.

Once the detection mechanism is refined, the next milestone would be to interface that optical signal with a small experimental crystal. The choice of crystal is not arbitrary. Labs might experiment with rare-earth-ion-doped crystals like praseodymium-doped yttrium silicate, known for their capacity to store quantum information for microseconds to milliseconds, or possibly even seconds, under specialized conditions. At an early stage, the device would not store large swaths of complex data but might capture discrete bursts of neural activity corresponding to short-term memory formation. By demonstrating that these bursts can be reliably “written” into the crystal and subsequently “read” out at a later time, researchers would confirm the fundamental principle behind Hippocampus Sync-Banks: that ephemeral neural codes can be transcribed into a stable external medium.

Of course, storing a fleeting pattern is just one half of the puzzle. To realize the Sync-Bank concept fully, the same pattern must be reintroduced into the brain in a way that the hippocampus recognizes. Here, scientists would leverage neural stimulation techniques. In theory, the crystal would “release” the stored patterns in the form of carefully modulated optical or electrical signals. Specialized interfaces near or within the hippocampus—perhaps using microLED arrays or sophisticated electrode grids—would then convert those signals back into the language of the neurons. If the signals are replayed with the correct timing and intensity, the hippocampus might treat them as though they are its own native memory patterns, thereby reactivating the memory. Experimental validation could involve training an animal to associate a particular stimulus with a reward, capturing the neural trace, and then seeing if artificially stimulating that trace at a later time recalls the memory even in the absence of the original stimulus.

Such experiments would inevitably confront thorny technical issues. Neurons and synapses adapt or “rewire” themselves as learning progresses, and the hippocampus is far from static. Overlapping memory traces often share neurons, meaning that reintroducing one memory trace might partially interfere with or activate another. To address this, scientists would need real-time feedback loops that track how the hippocampus responds to artificial signals. Machine learning algorithms might adjust the reintroduced signal to better fit the updated neural state, ensuring that the stored pattern does not clash with changes in the memory landscape. In other words, a second or third generation of prototypes could incorporate adaptive feedback, not just a one-way feed of recorded data. This type of refinement would be crucial to the user’s experience, because we do not simply recall memories as static snapshots; each time we remember something, our brains incorporate subtle new contexts and associations.

Grants are for two years, in order to enable the grantees to submit a regular application to the next competition in their area of research. It is implemented within the framework of the regular BSF research grants program, i.e., it must exhibit scientific excellence, have a strong element of cooperation between Israeli and American scientists, and fall within the areas of research supported in that year by the BSF. In addition, at least one of the principal investigators should have attained his/her Ph.D., M.D. degree or equivalent, no more than ten years prior to submitting his/her proposal.

Caltech researchers have developed PAMs, a novel material that blends the properties of solids and liquids, making them highly adaptable for diverse applications.

These materials are inspired by chain mail but take structural complexity to new levels, thanks to advanced 3D printing.

Discovering a new type of material.