Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Fungal secrets of a sunken ship: Advanced decay found throughout USS Cairo despite past wood preservation efforts

University of Minnesota researchers studied the microbial degradation of the USS Cairo, one of the first ironclad and steam-powered gunboats used in the United States Civil War. Studies of microbial degradation of historic woods are essential to help protect and preserve important cultural artifacts.

Built in 1861, the ship hit a torpedo and sank in December 1862 and was recovered about 100 years later from the Yazoo River. It has been on display at the Vicksburg National Military Park in Mississippi. Although the ship has a canopy cover, it is exposed to environmental elements.

“Continued degradation of this historic Civil War ship is causing serious concerns for its long-term preservation. To determine the appropriate conservation efforts, it is essential to understand the current condition of the wood and the microorganisms causing the degradation,” said lead author Robert Blanchette, a professor in the College of Food, Agricultural and Natural Resource Sciences.

Successful experiments reprogram rogue T cells for targeted autoimmune disease therapy

Two teams of researchers have developed a cell reprogramming technology that converts rogue disease-causing T cells from our immune system into protective Treg cells. These cells help ensure that the immune system doesn’t attack the body’s own tissues. The breakthroughs could usher in more personalized and targeted cell therapies for a host of autoimmune diseases.

In the first paper, published in the journal Science Translational Medicine, scientists developed a targeted cell therapy against pemphigus vulgaris (PV). This severe autoimmune skin disease causes blisters and sores.

They took the cells that were causing the disease (Dsg3-specific pathogenic T cells) from mouse models and and converted them into harmless Treg cells. They used specialized chemical tools to switch on a gene called Foxp3, which controls a cell’s ability to help the , and cut off a specific activation signal to prevent the cells from turning back into attackers.

James Webb Space Telescope Discovers Complex ‘Seeds of Life’ Molecules Beyond the Milky Way For the First Time

In a breakthrough first, University of Maryland scientists using the James Webb Space Telescope have announced the detection of large, complex, organic molecules beyond the Milky Way.

Often called “seeds of life” because these molecules make up the lifeforms found on Earth, the discovery was made within frozen ice particles around a young protostar, ST6, forming in a distant galaxy.

Retina e-paper promises screens ‘visually indistinguishable from reality’

In what could be an industry shifting breakthrough, researchers have created a screen about the size of a human pupil with a resolution that breaks through the limits of pixels. The invention could radically change virtual reality and other applications.

While most video screens such as those on our phones, TVs, and stadium jumbotrons seem to improve in resolution on a monthly basis, there has been an issue in improving the resolution of the tiny screens required in virtual reality apps. The problem is that as the screen moves closer to the human eye, the pixels that comprise it need to get smaller and smaller. Yet, if pixels get too small, their function starts to degrade and the image suffers. On a micro-LED screen, for example, pixels can’t get much smaller than one micrometer wide before losing their ability to render a clear, crisp image.

So instead of relying on pixels, researchers from Chalmers University of Technology, the University of Gothenburg and Uppsala University in Sweden turned to a different technique. They created what they’ve termed “metapixels” out of tungsten oxide, a material that can switch from being an insulator to a metal based on its electrical state. The metapixels reflect light differently based on their size and how they’re arranged, and can be manipulated by an electrical current. In a way, they function much like the pigments in bird’s feathers, which can take on different colors based on how the light is hitting them.

/* */