Toggle light / dark theme

This could essentially in the wrong hands be very bad but in the positive ways it could cure anything.


Right now the world is at war. But this is no ordinary war. It’s a fight with an organism so small we can only detect it through use of a microscope — and if we don’t stop it, it could kill millions of us in the next several decades. No, I’m not talking about COVID-19, though that organism is the one on everyone’s mind right now. I’m talking about antibiotic-resistant bacteria.

You see, more than 700,000 people died globally from bacterial infections last year — 35,000 of them in the U.S. If we do nothing, that number could grow to 10 million annually by 2050, according to a United Nations report.

The problem? Antibiotic overuse at the doctor’s office or in livestock and farming practices. We used a lot of drugs over time to kill off all the bad bacteria — but it only killed off most, not all, of the bad bacteria. And, as the famous line from Jeff Goldblum in Jurassic Park goes, “life finds a way.”

A group of tiny RNA that should attack the virus causing COVID-19 when it tries to infect the body are diminished with age and chronic health problems, a decrease that likely helps explain why older individuals and those with preexisting medical conditions are vulnerable populations, investigators report.

MicroRNAs play a big role in our body in controlling gene expression, and also are a front line when viruses invade, latching onto and cutting the RNA, the genetic material of the , says Dr. Sadanand Fulzele, aging researcher in the Department of Medicine and Center for Healthy Aging at the Medical College of Georgia at Augusta University.

But with age and some chronic medical conditions, the attacking microRNA numbers dwindle, reducing our ability to respond to viruses, says Dr. Carlos M. Isales, co-director of the MCG Center for Healthy Aging and chief of the MCG Division of Endocrinology, Diabetes and Metabolism.

Detailed analysis from the epicentre of the Italian COVID-19 outbreak describes increase in cases of rare Kawasaki-like disease in young children, adding to reports of similar cases from New York, USA and South East England, UK. Syndrome is rare and experts stress that children remain minimally affected by SARS-CoV-2 infection overall.

Doctors in the Bergamo province of Italy have described a series of ten cases of young children with symptoms similar to a called Kawasaki Disease appearing since the COVID-19 pandemic arose in the Lombardy region of Northern Italy, in a report published today in The Lancet.

Only 19 children had been diagnosed with the condition in that area in the five years up to the middle of February 2020, but there were 10 cases between 18 February and 20 April 2020. The latest reports could represent a 30-fold increase in the number of cases, although researchers caution that it is difficult to draw firm conclusions with such small numbers.

Most existing lithium-ion batteries (LIBs) integrate graphite anodes, which have a capacity of approximately 350 milliamp hours (mAh) per gram. The capacity of silicon anodes is almost 10 times higher than that of their graphite counterparts (around 2,800 mAh per gram), and could thus theoretically enable the development of more compact and lighter lithium-based batteries.

Despite their higher capacity, silicon anodes have so far been unable to compete with , as silicon expands and contracts during operation, so the anodes’ outer protective layer can easily crack while a battery is operating. In a recent paper published in Nature Energy, a team of researchers at the University of Maryland College Park and Army Research Laboratory has reported a new electrolyte design that could overcome the limitations of existing silicon anodes.

“Silicon anodes and their formed solid electrolyte interphase (SEI) protecting layers are easier to pulverize during battery operation, because the SEI strongly bonds to Si, so both experience a large volume of changes,” Ji Chen, one of the leading researchers who carried out the study, told Phys.org.

Cassowaries are big flightless birds with blue heads and dinosaur-looking feet; they look like emus that time forgot, and they’re objectively terrifying. They’re also, along with their ostrich and kiwi cousins, part of the bird family that split off from chickens, ducks, and songbirds 100 million years ago. In songbirds and their relatives, scientists have found that the physical make-up of feathers produce iridescent colors, but they’d never seen that mechanism in the group that cassowaries are part of—until now. In a double-whammy of a paper in Science Advances, researchers have discovered both what gives cassowary feathers their glossy black shine and what the feathers of birds that lived 52 million years ago looked like.

“A lot of times we overlook these weird flightless birds. When we’re thinking about what early birds looked like, it’s important to study both of these two sister lineages that would have branched from a common ancestor 80 million or so years ago,” says Chad Eliason, a staff scientist at the Field Museum and the paper’s first author.

“Understanding basic attributes—like how colors are generated—is something we often take for granted in living animals. Surely, we think, we must know everything there is to know? But here, we started with simple curiosity. What makes cassowaries so shiny? Chad found an underlying mechanism behind this shine that was undescribed in birds. These kinds of observations are key to understanding how color evolves and also inform how we think about ,” says Julia Clarke, a paleontologist at the Jackson School of Geosciences at the University of Texas at Austin and the paper’s senior author. Eliason began conducting research for this paper while working with Clarke at the University of Texas as part of a larger project funded by the National Science Foundation (NSF EAR 1355292) to study how like cassowaries have evolved their characteristic features.