Menu

Blog

Latest posts

Jun 12, 2024

Scientists reconstruct ancient genomes of the two most deadly malaria parasites to identify origin and spread

Posted by in categories: biotech/medical, military

In a study appearing in Nature, an international team of researchers led by the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, reconstructed the evolutionary history and global spread of malaria over the past 5,500 years, identifying trade, warfare, and colonialism as major catalysts for its dispersal.

Jun 12, 2024

Earth’s ‘Great Oxidation Event’ was spread over 200 million years, according to recent geochemical discoveries

Posted by in category: chemistry

Scientists refer to this phenomenon as the Great Oxidation Event, or GOE for short. But the initial accumulation of O2 on Earth was not nearly as straightforward as that moniker suggests, according to new research led by a University of Utah geochemist.

This “event” lasted at least 200 million years. And tracking the accumulation of O2 in the oceans has been very difficult until now, said Chadlin Ostrander, an assistant professor in the Department of Geology and Geophysics.

“Emerging data suggest that the initial rise of O2 in Earth’s atmosphere was dynamic, unfolding in fits-and-starts until perhaps 2.2. billion years ago,” said Ostrander, lead author on the study published June 12 in the journal Nature. “Our data validate this hypothesis, even going one step further by extending these dynamics to the ocean.”

Jun 12, 2024

New theory describes how waves carry information from surroundings

Posted by in category: futurism

Waves pick up information from their environment through which they propagate. A theory of information carried by waves has now been developed at TU Wien—with astonishing results that can be utilized for technical applications.

Jun 12, 2024

New theory links quantum geometry to electron-phonon coupling

Posted by in categories: materials, quantum physics

A new study published in Nature Physics introduces a theory of electron-phonon coupling that is affected by the quantum geometry of the electronic wavefunctions.

The movement of electrons in a lattice and their interactions with the lattice vibrations (or phonons) play a pivotal role in phenomena like superconductivity (resistance-free conductivity).

Electron-phonon coupling (EPC) is the interaction between free electrons and phonons, which are quasiparticles representing the vibrations of a crystal lattice. EPC leads to the formation of Cooper pairs (pairs of electrons), responsible for superconductivity in certain materials.

Jun 12, 2024

Study confirms the rotation of Earth’s inner core has slowed

Posted by in category: futurism

University of Southern California scientists have proven that the Earth’s inner core is backtracking—slowing down—in relation to the planet’s surface, as shown in new research published in Nature.

Jun 12, 2024

Researchers leverage inkjet printing to make a portable multispectral 3D camera

Posted by in categories: materials, robotics/AI

Researchers have used inkjet printing to create a compact multispectral version of a light field camera. The camera, which fits in the palm of the hand, could be useful for many applications including autonomous driving, classification of recycled materials and remote sensing.

Jun 12, 2024

Satellite data reveal electromagnetic anomalies up to 19 days before 2023 Turkey earthquake

Posted by in category: satellites

Earthquakes may betray their impending presence much earlier than previously thought through a variety of anomalies present in the ground, atmosphere and ionosphere that can be detected using satellites, a recent study in the Journal of Applied Geodesy suggests.

Jun 12, 2024

Astronomers discover parallel disks and jets erupting from a pair of young stars

Posted by in categories: chemistry, cosmology

Most of the universe is invisible to the human eye. The building blocks of stars are only revealed in wavelengths that are outside of the visible spectrum. Astronomers recently used two very different, and very powerful, telescopes to discover twin disks—and twin parallel jets—erupting from young stars in a multiple star system.

This discovery was unexpected, and unprecedented, given the age, size, and chemical makeup of the stars, disks, and jets. Their location in a known, well-studied part of the universe adds to the thrill.

Observations from the U.S. National Science Foundation’s (NSF) National Radio Astronomy Observatory’s (NRAO) Atacama Large Millimeter/submillimeter Array (ALMA) and NASA’s James Webb Space Telescope’s (JWST) Mid-Infrared Instrument (MIRI) were combined for this research.

Jun 12, 2024

A route to scalable Majorana qubits

Posted by in categories: particle physics, quantum physics

Researchers at QuTech have found a way to make Majorana particles in a two-dimensional plane. This was achieved by creating devices that exploit the combined material properties of superconductors and semiconductors. The inherent flexibility of this new 2D platform should allow one to perform experiments with Majoranas that were previously inaccessible. The results are published in Nature.

Jun 12, 2024

Researchers unveil the dynamical nature of emergent magnetic monopoles in real magnets for the first time

Posted by in category: materials

Recently, researchers discovered that a material called manganese germanide (MnGe) has a unique periodic structure, formed by special magnetic configurations called hedgehogs and antihedgehogs, which is called a magnetic lattice.

In these special configurations, the point radially outward (hedgehog) or inward (antihedgehog), resembling the spines of a hedgehog. These hedgehogs and antihedgehogs act like and antimonopoles, serving as sources or sinks of emergent magnetic fields.

MnGe exhibits what is known as a triple-Q hedgehog lattice. However, recent experiments have shown that the substitution of Ge with Si (MnSi1-x Gex) transforms the arrangement into the quadruple-Q hedgehog lattice (4Q-HL).

Page 1 of 11,29812345678Last