Menu

Blog

Page 8

Sep 24, 2024

LHCb measures the weak mixing angle

Posted by in category: particle physics

At the International Conference on High-Energy Physics in Prague in July, the LHCb collaboration presented an updated measurement of the weak mixing angle using the data collected at the experiment between 2016 and 2018. The measurement benefits from the unique forward coverage of the LHCb detector.

The success of electroweak theory in describing a wide range of measurements at different experiments is one of the crowning achievements of the Standard Model ℠ of particle physics. It explains electroweak phenomena using a small number of free parameters, allowing precise measurements of different quantities to be compared to each other. This facilitates powerful indirect searches for beyond-the-SM physics. Discrepancies between measurements might imply that new physics influences one process but not another, and global analyses of high-precision electroweak measurements are sensitive to the presence of new particles at multi-TeV scales. In 2022 the entire field was excited by a measurement of the W-boson mass that is significantly larger than the value predicted within these global analyses by the CDF collaboration, heightening interest in electroweak measurements.

The weak mixing angle is at the centre of electroweak physics. It describes the mixing of the U and SU fields, determines couplings of the Z boson, and can also be directly related to the ratio of the W and Z boson masses. Excitingly, the two most precise measurements to date, from LEP and SLD, are in significant tension. This raises the prospect of non-SM particles potentially influencing one of these measurements, since the weak mixing angle, as a fundamental parameter of nature, should otherwise be the same no matter how it is measured. There is therefore a major programme measuring the weak mixing angle at hadron colliders, with important contributions from CDF, D 0, ATLAS, CMS and LHCb.

Sep 24, 2024

Quantum Entanglement Observed in High-Energy Particles

Posted by in categories: particle physics, quantum physics

Have you ever wondered how the bizarre world of quantum mechanics intersects with high-energy particle physics?


Discover how quantum entanglement was observed in high-energy particles at CERN’s LHC, revolutionizing our understanding of particle physics.

Sep 24, 2024

Matt Walsh Presents: The Racial Victim Hierarchy

Posted by in category: futurism

The racial victim pyramid categorizes individuals based on perceived victimhood, with a hierarchy that places black individuals at the top and white individuals at the bottom, while also highlighting the complexities of identity and the influence of racial backgrounds on victim status.

Questions to inspire discussion.

Continue reading “Matt Walsh Presents: The Racial Victim Hierarchy” »

Sep 24, 2024

HLA genes in Type 2 diabetes: Protection and risk

Posted by in categories: biotech/medical, genetics

Robert C Williams performed genetic analysis to understand how the HLA and SLC16A11 genes affect Type 2 diabetes in Indigenous Americans.

Sep 24, 2024

Samsung is creating the world’s first Petabyte SSD

Posted by in categories: computing, transportation

While most of us are still struggling to find SSDs with greater capacities than 4TB, Samsung is working on creating the world’s first petabyte SSD. At least, that’s their plan. Last year, reports suggested that the company was about a decade away. Now, they seem much closer.

As the world’s largest manufacturer of 3D NAND storage, they’re certainly one of the most likely to do it. Samsung has revealed more information about its planes, and how it’s working to get to that 1,000-layer NAND required for such high capacities.

Samsung has long been a leader in large capacity solid state drives. And while they’re not readily available to the average consumer due to their (still) prohibitively expensive prices, Samsung announced a 16TB SSD way back in 2015.

Sep 24, 2024

George Church lab spawns $75m cell therapy startup

Posted by in categories: biotech/medical, genetics

GC Therapeutics’ plug-and-play stem cell programming platform aims to reduce cell therapy development time by up to 100 times.

Cell therapies have revolutionized the treatment of certain disease areas; however, challenges in scaling these therapies…


Cell therapy startup GC Therapeutics (GCTx) has emerged from the lab of renowned geneticist George Church, securing a $65 million Series A funding round that brings the total raised by the company to a cool $75 million. The company is on a mission to enable the next generation of cell therapies through its proprietary TFome platform, which GCTx claims is the first plug-and-play induced pluripotent stem cell (iPSC) cellular programming platform.

Continue reading “George Church lab spawns $75m cell therapy startup” »

Sep 24, 2024

Tugboat powered by ammonia sails for the first time, showing how to cut emissions from shipping

Posted by in category: energy

KINGSTON, N.Y. (AP) — On a tributary of the Hudson River, a tugboat powered by ammonia eased away from the shipyard dock and sailed for the first time to show how the maritime industry can slash planet-warming carbon dioxide emissions.

The tugboat used to run on diesel fuel. The New York-based startup company Amogy bought the 67-year-old ship to switch it to cleanly-made ammonia, a new, carbon-free fuel.

The tugboat’s first sail on Sunday night is a milestone in a race to develop zero-emissions propulsion using renewable fuel. Emissions from shipping have increased over the last decade — to about 3% of the global total according to the United Nations — as vessels have gotten much bigger, delivering more cargo per trip and using immense amounts of fuel oil.

Sep 24, 2024

What would happen if a tablespoonful of a neutron star was brought to Earth?

Posted by in categories: computing, space

A neutron star is the remnant of a massive star (bigger than 10 Suns) that has run out of fuel, collapsed, exploded, and collapsed some more. Its protons and electrons have fused together to create neutrons under the pressure of the collapse. The only thing keeping the neutrons from collapsing further is “neutron degeneracy pressure,” which prevents two neutrons from being in the same place at the same time.

Additionally, the star loses a lot of mass in the process and winds up only about 1.5 times the Sun’s mass. But all that matter has been compressed to an object about 10 miles (16 kilometers) across. A normal star of that mass would be more than 1 million miles (1.6 million km) across.

A tablespoon of the Sun, depending on where you scoop, would weigh about 5 pounds (2 kilograms) — the weight of an old laptop. A tablespoon of neutron star weighs more than 1 billion tons (900 billion kg) — the weight of Mount Everest. So while you could lift a spoonful of Sun, you can’t lift a spoonful of neutron star.

Sep 23, 2024

Study shows cholesterol enhances exosome-mediated RNA drug delivery

Posted by in categories: biotech/medical, genetics

RNA interference (RNAi) technology has gradually become a cutting-edge technology for treating diseases such as genetic disorders and cancer due to its huge potential in gene expression regulation. However, the efficient delivery and safety of short interfering RNA (siRNA) remain key challenges for its clinical application.

Sep 23, 2024

Artificial General Intelligence: A Definitive Exploration Of AI’s Next Frontier — Analysis

Posted by in category: robotics/AI

Artificial General Intelligence (AGI) is a field within artificial intelligence (AI) where researchers are working to develop a computer system that can surpass human intelligence in various tasks.

These systems might understand themselves and control their actions, including changing their own code. They could learn to solve problems on their own, just like humans, without needing to be taught.

The term “Artificial General Intelligence (AGI)” was first used in a 2007 book, which is a collection of essays edited by computer scientist Ben Goertzel and AI researcher Cassio Pennachin.

Page 8 of 11,764First56789101112Last